龙傲天
全职 · 500/日  ·  10875/月
工作时间: 工作日09:00-17:00工作地点: 远程
服务企业: 0家累计提交: 0工时
联系方式:
********
********
********
聊一聊

使用APP扫码聊一聊

个人介绍

我是程序员客栈的【龙傲天】,一名【深度学习工程师】; 我本科毕业于【长安大学】,硕士毕业于【中国科学院软件研究所】; 熟练使用【Python】,【TensorFlow】,【Keras】; 如果我能帮上您的忙,请点击“立即预约”或“发布需求”!

工作经历

  • 2019-09-01 -2022-07-01软件研究所学生

    在软件所就读期间发表了CCF-A类会议文章Accurate Fairness: Improving Individual Fairness without Trading Accuracy (AAAI-23)

教育经历

  • 2019-09-01 - 2022-07-01软件所软件工程硕士

  • 2012-09-01 - 2016-07-01长安大学网络工程本科

技能

深度学习
0
1
2
3
4
5
作品
Accurate Fairness Criterion

Code for Accurate Fairness: Improving Individual Fairness without Trading Accuracy (AAAI-23) Siamese fairness in-processing for improving the accurate fairness of a machine learning model. For example: to improve the accurate fairness on the Ctrip dataset, First run prepare_ctrip_data.py to generate the augmentated training dataset, Then run train_ctrip_siamese_fairness.py to improve the accurate fairness. How to check whether the predications of a machine learning model are accurately fair? For example: to check the accurate fairness on the Ctrip dataset, First run prepare_ctrip_data.py to generate the test dataset, Then run get_ctrip_result.py to print out the accuracy, individual fairness, group fairness and accurate fairness measurements of the baseline model and the corresponding Siamese fairness model, in the following formats a table, similar to Table 3 in our main paper, for statistical results of each model with various sensitive attributes a chart X_Y.pdf in .\pic, similar to Figure 2 in our main paper, for fairness confusion matrix performances of dataset X under method Y (e.g., bl=baseline, sf=Siamese fairness) a chart X_Fairea.pdf in .\pic, similar to Figure 3 in our main paper, for Fairea evaluation of dataset X

0
2024-11-08 10:30
下载次数:0
¥2000
更新于: 11-08 浏览: 34