五好幼儿
1月前来过
全职 · 1000/日  ·  21750/月
工作时间: 工作日2:00-0:00、周末24:00-0:00工作地点:
服务企业: 7家累计提交: 2工时
联系方式:
********
********
********
聊一聊

使用APP扫码聊一聊

个人介绍

1,对机器学习算法,深度学习算法熟悉,能够独立进行算法设计和实现。
2,熟悉数据挖掘流程,能够利用机器学习算法对数据进行分析。

工作经历

  • 2018-01-01 -至今北京万维星辰科技有限公司算法工程师

    1,设计和应用机器学习算法对日志大数据进行清洗,聚类,和异常检测。 2,构建基于时间序列的异常检测算法,对时间序列数据进行异常分析。 3,应用NLP技术对企业内文档,法律法规等文本文件进行语义分析。

  • 2017-01-01 -2017-10-01上海生命科学研究院算法工程师

    利用并行计算技术对DNB算法进行并行化,提高算法运行效率。

  • 2014-09-01 -至今HILABResearch Asistant

    自本科大一进入周丰丰老师的实验室(主页:http://www.healthinformaticslab.org)后,以第一作者的身份发表多篇SCI论文,主要研究领域为生物组学大数据的特征选择算法,图像特征提取,软件设计与并行计算等。

教育经历

  • 2018-07-01 - 2018-08-01University of PittsburghInformation ScienceMaster

    本人目前在 University of Pittsburgh攻读Master学位,Major是Information Science。

  • 2014-09-01 - 2018-06-01吉林大学计算机科学与技术本科

    1,大一进周丰丰老师的HILAB实验室,并在本科毕业前以第一作者的身份发表多篇SCI论文。主要进行生物组学大数据的特征选择,图像特征提取,软件设计和并行计算的研究。 2,多次获得数学建模大赛一等奖和二等奖,第二届互联网+创新创业大赛银奖。 3,在校获奖学金,优秀毕业论文。

技能

数据挖掘
深度学习
机器学习
0
1
2
3
4
5
0
1
2
3
4
5
作品
MUSTv2: An Improved De Novo Detection Program for

- Optimized the C++ code and running pipeline of the MITE Uncovering SysTem (MUST) to enhance its usability by assuming no prior knowledge of MITEs required from the users - Significantly increased its running speed compared with the first version & the current version also shows significantly increased detection accuracy for recently active MITEs - Prepared a benchmark dataset, the simulated genome with 150MITE copies for interested researchers - Worked as the co-first author and published the paper on the Journal of Integrative Bioinformatics

0
2018-08-29 12:52
TriZ-a rotation-tolerant image feature and its app

- Worked as a co-first author in this paper that is under review by Computers in Biology and Medicine - Designed a novel rotation-invariant image feature and Triz demonstrated the effectiveness on both the rotation invariance and the lesion detection of three gastric lesion types - Achieved 87.0% in the four-class classification problems of the three gastric lesion types and the normal controls, averaged over the twenty random runs of 10-fold cross validations

0
2018-08-29 12:50
RIFS: a randomly restarted incremental feature sel

- Worked as a co-first author to completely re-code the previous R program in Python - Optimized the system with parallel computing to improve calculating speed dramatically - Applied statistics in the feature selection to rank the biomedical features with statistical association evaluation algorithm T-test - Compared common machine learning algorithms such as Support Vector Machine (SVM), K Nearest Neighbors (KNN), Decision Tree (DTree) ,Naïve Bayesian classifier (NBayes), Logistic Regression (LR) - Proposed and tested a few novels ideas in the RIFS algorithm which outperforms the existing filter and wrapper feature selection algorithm on both transcriptomic and methylomic datasets - Published the paper on Scientific Reports

0
2018-08-29 12:47

好评度
  • 专业(强烈推荐)
  • 按时(强烈推荐)
  • 态度(强烈推荐)
成功率 0 % 1 人评论
用户评价

用户48421
新手任务教练
顺利完成新手任务,接单功能开启,祝好运!
更新于: 2018-08-29 浏览: 1934