綤鼚
1月前来过
全职 · 300/日  ·  6525/月
工作时间: 工作日18:00-22:30、周末00:00-00:00工作地点: 远程
服务企业: 12家累计提交: 0工时
聊一聊

使用APP扫码聊一聊

个人介绍

一名双非的学术型计算机硕士研究生毕业,在TCL新技术有限公司担任软件开发工程师一职,对安卓app开发有较深的理解。拥有扎实的Core Java基础,良好的编程风格;熟悉JSP+Servlet+JavaBean模式的WEB开发;熟悉Struts,Hibernate,Spring等开源框架,了解EJB; 熟悉Tomcat,Jboss服务器等,熟悉基于Linux及Unix环境下的软件开发。


工作经历

  • 2019-07-07 -2020-12-07TCL新技术有限公司软件工程师

    负责TV产品应用概要设计、应用开发和调试; 进行软件详细设计、代码编写以及相关测试等; 负责多媒体播放器进行迭代开发改善用户体验。

教育经历

  • 2016-09-01 - 2019-07-07西安工业大学计算机应用技术硕士

    主修课程:软件体系结构、形式语言与自动机、分布式系统、人工智能、面向对象设计、云计算、大数据等 研究方向:云机器人

技能

Android
0
1
2
3
4
5
作品
基于SOA的云机器人资源调度框架研究

OpenStack 云平台的实现 CloudSim仿真试验 私有云平台的搭建和资源虚拟化实现 SOA接口层设计和实现 基于FUTG的资源调度算法研究

1
2021-05-06 16:05
Local Logic Optimization Algorithm for Autonomous

In an unknown environment, autonomous mobile robots rely on sensors to continually obtain information about the surrounding environment, discern the location of obstacles, make calculations and make decisions independently. The existing navigation algorithms are prone to repetition on the rigid path in the face of complex environment such as U-shape, which leads to the navigation can not continue. To this end, this paper presents a local optimization navigation algorithm based on fuzzy logic, using "recognition - memory" strategy to process the sensor information. In the path planning to retain the location of the recent path and angle characteristics and other related resources, the formation of "memory." When the current planning path forms a dead zone and runs repeatedly, "identification" is formed and the path and navigation decision are re-planned to avoid obstacles colliding. The simulation experiments under Webots Pro and Matlab show that the mobile robot can effectively avoid and avoid the dead zone under the guidance of fuzzy rules and realize better autonomous navigation..

0
2023-03-07 13:18
基于博弈论的云资源调度算法研究

在云环境下的大数据中心中,虚拟机数目和虚拟机的负载会随着用户和应用的需求而时常发生变化。虚拟机需要进行动态资源调整,及时移除系统中的热点资源,从而达到整个系统的负载均衡。通过对云资源分配的理论研究,获取到First-Fit贪心算法和Round Robin轮询算法等。将它们应用到一些云系统中虽然能够在短时间内解决问题,但存在资源利用率和负载均衡等方面的问题。文中提出一种基于博弈论的FUTG(Fairness-Utilization Tradeoff Gme)云资源调度算法。该算法打破了固定数量的资源分配瓶颈,将QoS因素纳入考量范围,解决了资源利用率以及资源分配的公平性这两个优化目标的资源调度问题。仿真实验结果表明,FUTG算法能够显著提高动态资源调度的有效性和动态负载下资源使用的执行效率。

0
2021-05-06 15:44
更新于: 浏览: 255