机器学习/深度学习

基于国内外通用大模型OpenAI、千问、DeepSeek,结合几何造型引擎,搭建基于AI的工业设计: 1、以“交付结果”代替“给予工具”为目标; 2、基于自然语言作为优先交互方式; 3、创建可修改、可编辑的BRep三维图形,而非拟合式三角面的固定三维特征; 4、交付工业级图形应用; 5、当前以包装设计为应用点进行展示。
480C/C++图形和图像工具
实时语音识别 (Real-time Speech Recognition): 能够捕捉麦克风输入,并将用户的语音实时、准确地转换为文本。 自然语言理解 (Natural Language Understanding - NLU): 分析转换后的文本,理解用户的意图和关键信息(例如指令、询问的对象、参数等)。 对话管理 (Dialogue Management): 在多轮交互中维护对话状态和上下文,使对话更加连贯自然。 任务执行与技能调用 (Task Execution & Skill Invocation): 根据理解的用户意图,执行相应的操作,例如: 信息查询: 获取天气预报、时间、百科知识、新闻等。 媒体控制: 播放/暂停音乐、调整音量。 简单助理任务: 设置提醒、创建待办事项。 语音合成 (Text-to-Speech - TTS): 将助手的文本回复通过 edge-tts 转换成清晰自然的语音进行播放。 Web 界面交互 (Web Interface Interaction): 提供一个用户友好的网页界面,可以: 显示语音识别的文本和助手的回复。 允许用户通过文本输入与助手交互。 (可能) 展示图片、链接等多媒体信息。 多模态反馈 (Multimodal Feedback): 结合语音、文本以及可能的视觉元素(在Web界面上)来呈现信息和交互结果。 图像分析(Image Analysis): 可以通过pygame.camera调用摄像头或者截图当前页面,并与llm互动获取想要的信息 剪切板提取(Clipboard Management): 可以通过pypercli获取剪切板中的文本内容并自动判断是否需要进行执行 上下文管理(Context management): 通过EnhancedConversationContext类管理对话记录,支持记住或者遗忘特定信息,根据相似度判断是否清除旧的上下文,能够根据对话历史生成更相关的回复 日志记录(Logging): 使用rich库美化日志输出,并将日志保存到文件中 网页搜索(Search): 使用DuckDuckGo搜索用户指定的内容,并返回搜索结果摘要
730Torch机器学习/深度学习
金融数据大模型分析平台是一款集实时新闻分析、股票监控和市场趋势预测​​于一体的专业工具。通过整合新浪财经新闻与天勤量化行情数据,结合大模型智能分析能力,为投资者提供:  实时金融新闻与AI影响评估  板块关联性分析与股票筛选  全市场监控与可视化统计  异常波动股票实时预警 平台采用​​多进程架构​​(新闻处理 + 股票监控并行),确保数据获取与分析的高效性 盘前部分: 一、建立负面清单,剔除不交易的个股 剔除st股、北交所、市值低于20亿、上市交易不足180日的股票 二、板块个股分类,每一个票更新热点概念和所属板块 1、分析当日涨停票的涨停原因,以及所属板块 三、盘前重点新闻分析 1、通过新浪财经新闻24小时获取新闻,在早上9点25前对前日15点后到当日9点半的新闻进行分析; 2、同步分析对应板块的个股的上涨情况,如果有涨幅超过5%的股票的板块,罗列该板块5只涨幅最大的股票; 盘中: 一、建立数据库,实时通过新闻热点 API 获取信息,归档到数据库 1、通过新浪财经新闻24小时获取新闻,每30秒更新一次,分析对应利好的板块; 二、热点相互通信,匹配最佳个股 2、同步分析对应板块的个股的上涨情况,如果有涨幅超过7%的股票的板块,罗列该板块5只涨幅最大的股票; 如果有没有涨幅超过7%的股票,则系统继续跟进;有的话重复前述操作;没有则持续跟进到当日收盘。
3860Python机器学习/深度学习
1. 本软件使用了前后端分离技术,前端使用 QML/JS 使其界面开发快,迭代快,后端使用 C++/Qt 框架,处理数据性能高; 2. 软件的产品简介:针对穿戴式运动心电信号(精度有限、易受噪声干扰),结合统计域分析、频谱分析、图拉姆角场(Gramian Angular Field, GAF)图像转换三种方法,以下是 12 个易提取、抗噪声能力较强的特征指标,涵盖心率、呼吸率、心率变异性等核心信息。
650C/C++GUI开发框架
传统视频特征提取高度依赖领域知识,切鲁棒性差,泛化能力也不够。深度学习的方法通过多层非线性变换,从原始数据中学习层次化的特征表示,从而实现更准确、更鲁棒的特征提取。操作步骤如下: (1)对原始短视频做简单的预处理,使用FFmpeg工具快速将视频按照帧抓取图片; (2)依照准确率和时间的需求决定输入模型的图片的数目N,以相等的间隔均匀地从所有图像中抽取输入图像,组成一段有序的输入帧,并剪切成224像素×224像素的大小; (3)将步骤(2)中处理好的图片输入二维卷积神经网络,输出浅层特征表示图; (4)将步骤(3)的输出结果,输入伪三维卷积神经网络,进行时间信息和高维空间信息学习.
710Python机器学习/深度学习
1. 产品面向科研院所,解决了自动处理遥感图像,自动识别机场和飞机的需求。 2. 相比市场常规方案,此方案具有速度快,识别准确的特点。 3. 方案用到了opencv的图像处理算法,包括图像增强,图像分割。用到了matlab实现的注意力算法,用到了tensorflow架构实现的图片分类和目标检测模型.方案的部署采用了docker技术.
1170C/C++图形/图像处理
双能X射线全身骨密度系统由上位机软件、STM32、FPGA组成,主要由上位软件进行扫描测控。技术包括操作系统原生Socket进行通讯、自主设计通讯协议设计与解析、骨密度算法实现/验证,线阵探测器图像重建、图像处理(降噪、增强、ROI分割)、深度学习训练以集成、软件架构设计、项目搭建、软件开发(QT)等。
710C/C++C/C++开发工具
一、软件面向的行业和业务场景 本项目聚焦低成本深度感知需求,适用于小型企业或创业团队的轻量级应用场景,例如: 电商3D商品展示:用手机拍摄商品(如杯子、玩具)的左右视图,生成深度图,用于虚拟商城的“360°+深度”展示(比如用户可以看到杯子的凸起部分离屏幕更近,提升购物体验); 家用智能设备:扫地机器人的简单环境建模(用单相机移动拍摄,生成房间地面的深度图,判断障碍物距离,避免碰撞); 教育类APP:儿童编程软件中的“视觉实验”模块(让孩子用手机拍自己的玩具,生成深度图,直观理解“双目视觉”的原理)。 这些场景的核心需求是低成本、易部署(不需要专业双目相机),而本项目用“单相机+OpenCV”完美解决了这个问题,符合就业中“用最低成本实现核心功能”的要求。 二、项目功能模块与具体功能 项目按照“标定→双目校准→匹配→深度生成”的工业级 pipeline 设计,实现了4个核心功能,每个功能都对应任务书的考核点: 相机内参校准(张正友标定): 做什么:用手机拍15张不同角度的棋盘格照片(倾斜、旋转、远近),用OpenCV的cv2.calibrateCamera算法算出相机的焦距(镜头的“放大倍数”)、主点(图像中心)和畸变系数(消除镜头的“鱼眼效应”)。 为什么:没有内参,后续的深度计算会有很大误差(比如拍同一个杯子,畸变会让杯子看起来“变形”,导致深度图不准)。 相机外参定位(DLT标定): 做什么:用手机拍左右两个位置的立方体照片(6cm边长,硬纸板做的),手动标注立方体的顶点(比如前面的4个角、顶面的2个角),用cv2.solvePnP算法算出相机相对于立方体的旋转方向(比如相机向左转了10度)和平移位置(比如相机离立方体20cm)。 为什么:外参是“相机在哪里”的关键参数,后续双目标定需要左右相机的外参来算它们之间的相对位置。 双目姿态校准(双目标定): 做什么:结合左右相机的外参,算出它们之间的旋转矩阵R(右相机相对于左相机转了多少度)和平移向量T(右相机在左相机右边10cm),得到基线长度(双目系统的“眼睛间距”,决定深度计算的精度)。 为什么:没有双目姿态,左右图像的“对应关系”会乱,立体匹配无法正确找到同一个点在左右图像中的位置。 立体匹配与深度计算: 做什么:(1) 用手机拍左右两个角度的目标照片(比如杯子),用SAD滑动窗口算法(窗口大小可调,5x5/7x7)生成视差图(左右图像中同一个点的位置差);(2) 用视差图和之前的内参、基线长度,用公式算出深度图(灰度值表示距离,亮的地方离相机近,暗的地方离相机远)。 为什么:这是项目的核心功能——把“2D照片”变成“3D深度信息”,满足场景需求(比如电商的3D展示、扫地机器人的避障)。 三、项目的技术选型与架构特点 技术选型: 核心库:OpenCV(4.8.0版本)——工业级开源图像处理库,支持相机标定、立体匹配、深度计算等所有核心功能,跨平台(Windows/Android/iOS),适合就业中的“快速原型+部署”需求; 开发语言:Python(3.9版本)——开发效率高,语法简洁,适合快速调试(比如调整滑动窗口大小,马上就能看到深度图的变化); 硬件:手机(iPhone/Android)——低成本、易获取,不需要专业相机,符合“轻量级应用”的要求。 架构特点: 模块化 pipeline:每个功能(内参校准、外参定位、双目校准、深度计算)都是独立模块,比如“内参校准”模块可以用到其他单目项目中,“立体匹配”模块可以替换算法(比如把SAD换成更准确的SGBM),便于就业中的“功能复用”; 可参数化调整:滑动窗口大小、视差范围、最大深度阈值都是可调的,比如调整窗口大小(5x5→7x7),可以对比深度图的“清晰度”和“稳定性”(窗口大,深度图更模糊但更稳定;窗口小,更清晰但容易有误差),符合任务书“不同窗口尺寸对比”的要求; 可视化结果:生成的深度图是黑白的,直观看到目标的三维形状(比如杯子的凸起部分更亮),便于就业中的“结果展示”(比如给客户看“我们的系统能算出杯子的深度”)。
1430Python机器学习/深度学习
知识问答平台开源项目
项目介绍 silc-client 是一个基于 Vue 3 + TypeScript 构建的现代化前端应用项目。该项目使用了最新的前端技术栈,提供了一个响应式、高性能的用户界面。 技术栈 框架: Vue 3.5.13 (Composition API) 语言: TypeScript 5.8.0 构建工具: Vite 6.2.4 状态管理: Pinia 3.0.2 路由: Vue Router 4.5.0 UI组件库: Element Plus 2.9.9 图表库: ECharts 5.6.0 HTTP客户端: Axios 1.9.0 工具函数: Lodash 4.17.21 日期处理: Day.js 1.11.13 项目特性 ? 基于 Vue 3 Composition API 的现代化开发体验 ? 使用 Element Plus 提供的丰富UI组件 ? 集成 ECharts 支持数据可视化 ? 使用 Pinia 进行状态管理 ?️ Vue Router 实现单页应用路由 ? TypeScript 提供类型安全 ⚡ Vite 提供快速的开发服务器和构建
2070Python机器学习/深度学习
本程序致力于提供一个强大且实用的人群计数工具,其核心目标在于精准地检测图像或视频流中出现的人体目标,并高效地统计其数量。为实现这一任务,程序采用了当前深度学习领域的主流框架——PyTorch,构建并部署了一个经过优化的YOLOv3 (You Only Look Once, version 3) 目标检测模型。 YOLOv3 被选为本程序的核心算法,主要得益于其卓越的性能平衡。作为一种单阶段(one-stage)检测器,YOLOv3 以其显著的速度优势闻名,能够在保持较高检测精度的同时,满足实时处理的需求。其核心原理是将目标检测视为一个回归问题,通过单次前向传播即可预测图像中所有目标的边界框位置及所属类别概率。本程序特别利用了 YOLOv3 的 Darknet-53 骨干网络提取深度特征,并结合其多尺度预测机制(在三个不同尺度的特征图上进行检测),使其能够有效应对人群计数中常见的尺度变化大(如近处个体大、远处个体小)和密集遮挡等挑战,精准捕捉不同大小的人体目标。
1000Python源文件源码
ADAS(Advanced Driver Assistance System,高级驾驶辅助系统))是一套集成传感器、算法和车辆控制技术的智能化系统,旨在通过实时环境感知、风险预警和部分自动化控制,显著提升行车安全性、驾驶舒适性和能源效率。作为自动驾驶(L1-L3级)的核心技术基础,ADAS已成为现代智能汽车的标配,并逐步推动汽车产业从“被动安全”向“主动智能”转型。
610C/C++机器学习/深度学习
本项目主要开发设计了基于yolov11+SE的垃圾分类系统,本系统集成yolo模型以及引入se注意力机制,开发了一款app,界面简约,功能完善。可以用来学习如何调用yolo模型!以下是摘要介绍: 在当今这个城市化快速发展的时代,城市里的生活垃圾产量一直在持续不断地攀升,传统的人工进行垃圾分类的方式,它的效率特别低下,而且分类的准确性也不怎么高,很难契合现在资源循环利用以及环境保护方面的需求。本系统专门设计并且实现了一个基于深度学习的生活垃圾分类目标检测系统,这个系统借助了比较先进的图像识别技术,能够实现垃圾的自动化精准分类。凭借这样的分类方式,就可以提高垃圾分类的效率,还可以降低对环境的污染,促进资源的循环利用,在系统开发的过程当中,凭借多种不同的渠道去收集数据,把公开的数据集进行整合,收集到的数据经由去噪、标准化以及数据提高等一系列的预处理操作之后,按照7:2:1的比例划分成训练集、验证集和测试集,系统选用了YOLOv11模型,并且结合SE注意力机制来进行特征提取和模型训练,还利用Pytorch库对特征选择进行优化。在系统架构方面,前端是基于Vue.js框架来构建交互界面的,后端运用Flask框架来处理业务逻辑,搭配MySQL数据库来管理数据,这样就能实现实时检测、结果统计展示以及用户交互等功能,经由测试可以得出,这个系统对四类垃圾的分类精确度能够达到88%以上,就算是在复杂的环境之下,它仍然可以保持比较高的检测稳定性,有效地推动了垃圾分类智能化的发展,有很不错的应用前景。
1870PythonAPP
车牌识别源文件源码
本代码基于YOLO(You Only Look Once)算法实现了高效的车牌识别系统。YOLO作为单阶段目标检测模型,通过卷积神经网络同时预测边界框和类别概率,显著提升了检测速度。系统首先利用YOLO模型定位图像中的车牌区域,随后通过OCR技术识别车牌字符。实验表明,该方案在复杂场景下仍能保持较高的准确率和实时性,平均识别精度达90%以上,单帧处理时间低于50ms。该方法克服了传统车牌识别算法受光照、角度影响的缺陷,为智能交通、车辆管理等应用提供了可靠的技术支持。
720Torch机器学习/深度学习
1.本方案面向使用三坐标测量机(CMM)进行工业测量作业的技术人员,特别是在高精度、重复性操作场景中工作的一线测量员。传统测量流程需频繁使用鼠标键盘进行操作,效率低且容易出错。该语音助手系统通过自然语音交互替代传统输入方式,显著简化操作流程,解放双手,提高测量效率,并减少人为误操作的可能性,特别适用于复杂环境下的辅助操作和高频重复任务。 2.完全本地化运行:无需联网,适用于厂房、保密实验室等网络受限环境,保障数据安全。 高定制化指令系统:内置约60条基础指令,支持模糊语义识别与上下文理解,结合测量业务深度优化。 跨平台集成能力:通过 Python 调用 COM 接口与三坐标测量软件深度集成,可快速部署到现有工业系统。 大模型推理:加入大模型增强语音推理,提升智能化 人性化语音反馈机制:集成本地 TTS(语音合成)模块,增强交互感与用户体验,贴近手机语音助手的使用习惯。
940Python机器学习/深度学习
主要面向企业数据分析师、知识工程师、AI 研发团队以及希望构建智能问答系统、知识管理平台的机构。在知识图谱及动态数据问答分析需求日益增长的背景下,当前知识大脑构建存在诸多痛点:知识建模缺乏灵活且标准化的工具,导致知识结构混乱;知识编辑效率低,难以快速更新与修改;不同来源数据难以融合,形成数据孤岛;数据接入渠道单一,无法适配多样化数据源;数据入图过程复杂,耗时长;数据标引不精准,影响知识检索与应用;知识图谱底层存储性能不足,无法满足高并发、大规模数据存储需求。本方案旨在一站式解决知识大脑构建环节中的这些问题,提升知识管理与应用效率。​ 2.【50%】相比于市场常规方案,本方案有哪些特点​ 一体化全流程覆盖:市场常规方案往往只能解决单一环节问题,如仅提供知识图谱存储或数据接入功能。而本方案涵盖知识建模、编辑、融合、数据接入、入图、标引及底层存储等全流程,各模块紧密配合,形成完整闭环,大幅提升知识大脑构建效率。​ 高度灵活与可扩展性:知识建模模块支持自定义多种知识结构模板,可根据不同行业、业务需求快速调整;数据接入模块兼容关系型数据库、非关系型数据库、API 接口、文件等多种数据源,且能轻松接入新的数据源类型;底层存储可根据数据规模动态扩展存储节点,适应数据量增长。​ 智能高效:知识编辑模块配备智能辅助编辑功能,如自动语法检查、语义关联推荐等,提高编辑效率;知识融合利用机器学习算法,自动识别数据间的关联与冲突,实现高效融合;数据标引采用自然语言处理与深度学习技术,实现自动化、精准化标引。​ 高性能存储与查询:底层存储采用分布式图数据库技术,相比传统方案,在处理大规模知识图谱数据时,查询响应速度提升数倍,能支持高并发的知识问答与分析请求。​ 3.【20%】方案的产品组成或技术选型​ 知识建模工具:采用基于本体的建模技术,结合可视化建模界面,用户可通过拖拽、配置等操作快速构建知识模型,支持 OWL、RDF 等标准语义网语言。​ 知识编辑平台:基于 Web 的富文本编辑界面,集成 AI 辅助编辑功能,支持多人协作编辑,确保知识更新的及时性与准确性。​ 知识融合引擎:基于深度学习的实体对齐与关系融合算法,自动处理数据冲突,实现多源数据的无缝融合。​ 数据接入网关:支持 JDBC、RESTful API、FTP 等多种数据接入协议,提供数据清洗、转换等预处理功能,保障数据质量。​ 数据入图工具:采用并行处理技术,将清洗后的数据高效导入知识图谱,支持增量更新与全量更新模式。​ 数据标引系统:基于 BERT 等预训练语言模型,结合自定义标注规则,实现自动化、高精度的数据标引。​ 知识图谱存储:选用分布式图数据库 Dgraph,具备高可用性、强一致性和水平扩展性,能够高效存储和查询大规模知识图谱数据。​ 这套工具集全面覆盖知识大脑构建需求并独具优势。若你对其中某个工具、技术或有其他优化需求,欢迎随时和我说说。
2420Java自然语言处理
本项目通过第一部分在对案例主要数据进行数据处理后利用因果推断机器学习和匹配方法对PTSD病理进行探究,并针对病理提出保护路径。第二部分针对多模态数据融合要求,建立起数据处理,特征选择,多模态PTSD模型建立和指标评价的科学闭环。该项目结合了机器学习与因果推断算法,以及对非结构化数据的处理技术,使得对PTSD的分类预测效果有所提升,最终该项目也是获得了国家级二等奖的成绩。
910Python机器学习/深度学习50.00元
监管深圳市所有冷冻冷藏冷库,目前已接入平台运行有1131家冷库,平台主要功能通过AI视频识别分析,监管冷库日常风险,及时提醒地区所负责人,负责人通知冷库人员做出整改。 AI视频风险识别:人员防护风险:未戴口罩、未穿防护服,人员变更风险:陌生人异常、冷链车辆异常,安全风险:整洁度异常、冷库叠超高、玩手机、有积水,走私风险:叉车异常。 系统分为7个子系统:平台管理系统、H5数据上报平台、数据可视化大屏、转码网关、ONVIF IPC摄像头接入平台、AI图像识别和行为分析平台、深圳市进口冷链追溯冷库信息。
1060Java机器学习/深度学习
词袋模型只考虑是否出现,而不考虑词与词之间的顺序,导致文本中很多语义关联的丢失。 本项目用Dirichlet分布α中取样生成文档di的主题分布θi(主题分布θi由超参数为α的Dirichlet分布生成),从主题的多项式分布θi中取样生成文档di的第j个词的主题z(i,j),并将其对应的词语分布∳(z,j)由参数为β的Dirichlet分布生成,依次作为一个词是否出现在前一个词的概率。 该项目简化了语料库或数据框与大语言模型(LLMs)的对接过程,通过确定最佳主题数,支持文本分类、摘要生成、评分以及分析等多种任务。
800Python机器学习/深度学习
1.一份眼底照片的数据集(取自ODRI-5k),分为正常眼底和白内障眼底。 2.对数据集进行划分,使用TensorFlow训练两个网络resnet-18和mobilenet-v1分别训练两个模型。测试集上正确率分别达到95%。 3.本地部署一个基于neo4j数据库和医疗问答数据集的KGQA(知识图谱问答)项目。 4.使用Django构建一个本地网站,具备(人脸)注册/登录功能;上传眼底图像,后台对样本进行预测,页面显示诊断结果的功能;诊断结果在QA系统中进行查询, 给出医疗建议的功能;医疗问答页面功能,服务器根据用户输入的疾病相关问题,返回并显示相关答案,同时进行语音播报。
950PythonDjango
与军工研究所合作开发针对雷达罩蜂窝孔径的测量仪器;实现对蜂窝格孔边长2-4mm,深度30mm范围内的单个蜂窝格孔内壁变形测量,并识别蜂窝格孔变形缺陷,形成六个蜂窝批量测量仪器;软件开发了上位测量操作及点云处理显示等核心算法;2D图像处理:1)图像操作及测量工具栏;2)选择测量中心处的二维图像(单个工件有多处测量中心);3)显示二维图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)缩略图显示:便于总图缩放显示;3D点云处理:1)3D点云操作及测量工具栏;2)选择测量中心处的3D点云(单个工件有多处测量中心);3)显示3D点云图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)内窥镜图像:显示格孔的合成图像;
860C/C++机器学习/深度学习
当前共574个项目
×
寻找源码
源码描述
联系方式
提交