人体动作识别和人像提取算法

我要开发同款
长征小跟班2021年04月20日
356阅读

作品详情

最直接用到的 AI 技术是图像抠图算法(image matting)。但为了得到更好的抠图效果,目前很多抠图技术都采用多种算法结合的解决方案,还包括显著性物体检测、图像语义分割和实例分割等算法。
相比图像抠图,视频抠图算法最大难点是时序一致性。对于视频抠图结果,一帧帧看结果都很不错,但是连在一起,边缘地区就会有抖动,抠图时序的一致性不够好。视频智能抠图技术就是在图像抠图技术基础之上,增加视频物体分割等算法来保证视频抠图结果的时序一致性,达到“抖动小,更平滑”的分割效果。期望达到的效果:抠图后,视频中的人神情、动作非常生动、自然,人物的头发丝纤细可见,视频主体人物和背景的衔接流畅,能够准确区分,整个画面很完整。
视频的前景和背景颜色比较接近,在这样的情况下,要保证抠图对象的完整性和局部细节的精确度,所需的技术难度较高,尤其对于头发丝、衣服褶皱等抠图精细程度高的部分。视频人物抠图,从人物分割来看,算法模型需要学习人物的先验知识,在前景 / 背景颜色比较接近和复杂纹理的情况下,人的先验知识可以起到重要的作用,能保证抠图对象的完整性。
为了既保证对象的整体性,又能得到精确的局部细节,从算法角度,高层特征和低层特征需要很好的融合在一起。目前很多图像分割网络,例如 HRnet 在这方面都处理得比较好。任海兵团队参考 HRnet、Deeplab V3+ 等语义分割网络提出了对应解决方案,该方案目前在最重要的语义分割数据集 Cityscape Test 数据集上达到了 84.3% 的正确率。
目前特别智能的抠图算法,特别是视频抠图算法,还处于实验室研究阶段。算法特别复杂,需要大量的计算资源,且算法本身也不是特别成熟,在通用场景和复杂场景下达不到用户的预期,因此只在某些特定的领域内针对具体场景进行优化,达到小范围的商用。市面上,商用软件中的抠图算法,需要处理更加通用的场景,加之受计算资源限制,无法使用特别复杂的算法,还达不到特别的智能。深度学习在像素级分类任务上取得了较大的进展。智能抠图相关的算法,例如图像物体分割、视频物体分割、Image Matting 等也取得了较大的进步。视频抠图在实现高度智能、大规模商用方面的潜力值得期待。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论