医学图像处理(胃部CT肿瘤分割与T分期)

我要开发同款
凉介zyl2021年11月01日
749阅读
作品源文件
pdf格式 1.26 MB
¥10.00

作品详情

通过对胃部CT图片分析,以深度学习技术为基础,实现自动化分割胃部肿瘤并进行相应分类。首先,针对在胃部肿瘤分割与T分期任务过程中出现的特征利用率低、分割结果不佳和分类结果不准确等问题,本研究在Y-Net算法模型的基础上设计了一种新型的网络模型AY-Net,该模型有两条主干线:分割主线、分类主线。这种新型的算法分为两步进行训练,第一步只训练分割主线得到肿瘤的粗分割结果,然后在第一步的基础之上联合训练分割分类主线得到最终的精分割和肿瘤T分期结果。为了提高算法对胃癌区域的关注度,引入了注意力机制来加强算法的准确性。此外还使用多核残差模块和密集连接空洞卷积模块提取深层的特性信息。本文主要对比U-Net、Y-Net、AttU-Net、CE-Net等算法,并把平均交并比(Mean Intersection over Union, MIoU)和准确率(Accuracy, Acc)作为实验结果的评价准则,AY-Net结果中的两项准则分别为0.721和0.732均优于其他网络。
其次,针对胃部肿瘤在图中所占比较小的数据,会产生过多的干扰信息缺乏针对性的问题。在AY-Net的基础上结合多尺度输入与自适应特征融合模块提出了一种多任务卷积神经网络MAAY-Net。与AY-Net相比,MAAY-Net拥有多尺度输入的特性,在分割网络上采样结束之后加入自适应特征融合模块,结合多尺度信息提取自适应特征系数。此外,为了改善小目标的分割和梯度变化,将Dice损失函数与focal损失相结合提出了混合损失函数加速网络训练并避免梯度消失和梯度爆炸。对所提方法进行定量定性的评估和分析,结果表明,MAAY-Net优于同类方法,MIoU和Acc分别达到0.843和0.794。此外还对所改进模块进行了消融实验,也证明了所提方法的可行性。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论