混合气体浓度预测模型

我要开发同款
iclearner2022年11月20日
280阅读

作品详情

为了实现对混合气体的浓度预测,本文基于BP神经网络实现了一个气体浓度回归模型。由于实验中混合气体的浓度跨度较大(0-150ppm),为了提高模型预测精度,本文先使用Boosting算法将混合气体分为四个浓度等级,再对每个浓度等级下的混合气体利用BP神经网络做定量预测。实验结果表明,此模型对混合气体中各组分预测浓度的相对误差接近0.05(>20ppm),预测性能优于单个BP神经网络模型,是一种具有高鲁棒性的气体浓度预测模型。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论