点击空白处退出提示
作品详情
(2)研究了基于生成对抗学习模式的神经网络,在全局注意力机制和特征融合机制下以无监督的方式学习真实雨水图像和高质量清晰图像特征,并在去雨的同时提升图像效果,如调整图像对比度、饱和度、还原图像细节等。针对视频去雨,本文提出了像素空间帧间差异损失和特征空间帧间差异损失来约束模型实现视频去雨前后的时序一致性。
(3)研究了基于“自由变换、融合”的数据增广算法,尽可能地模拟真实降雨受到许多自然环境影响下的成像效果。最后和其他现存的雨水数据集比较,本算法生成雨水图像更加逼真,雨线效果丰富。
实验结果显示,本文方法对雨水环境下道路路标的目标检测算法性能有显著的提高作用,在去雨后目标检测的平均精准度(mAP)提高了11.3个百分点。与现存的去雨方法相比,本文方法在图像/视频视觉效果上有很大优势。最后通过消融对比实验,验证了无监督学习阶段和数据增强算法对整体模型的有效性。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态
评论