空气质量预测

我要开发同款
proginn18593158572023年03月08日
113阅读
开发技术python

作品详情

根据历史污染和天气信息 预测污染物浓度。在前期的研究中,我们只关注污染物本身的时间状态变化,通过自回归移动平均模型(ARMA)+小波分解预测过一波,但这种方法没有考虑影响污染物浓度扩散的气象条件,而且也很难将空间因素考虑进去。我所用的LSTME模型考虑预测输入数据的多样性和多元化。做了如下工作(1)扩展了LSTM神经网络以捕获大气污染物浓度的长期时空依赖性,并提出了可预测未来24小时大气污染物浓度的多尺度预测框架;

(2)该方法能够有效地自动提取大气污染物浓度数据中的时空相关性;

(3)将辅助数据整合到传统的LSTM模型中,并且该综合模型表现出比传统方法更好的性能。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论