点击空白处退出提示
作品详情
基于深度强化学习方法框架Actor-Critic,设计出一种基于请求与应答通信机制和局部注意力机制的分布式深度强化学习路径规划方法(DCAMAPF)。在Actor网络,基于请求与应答通信机制,每个机器人请求视野内的其他机器人的局部观测信息和动作信息,进而规划出协同的动作策略。在Critic网络,每个机器人基于局部注意力机制将注意力权重动态地分配到在视野内成功应答的其他机器人局部观测和动作信息上。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态
评论