ThisisacollectionofMatlabandPythonscriptstosimulateseismicwavepropagationin1-Dand2-D.Thewavepropagationisbasedonthefirst-orderacousticwaveequationinstress-velocityformulation(e.g.Virieux(1986)),whichissolvedbyFinite-Differencesonastaggered-grid.
ContentInthisrepository1-Dand2-DversionsofFinite-DifferencewavesimulationcodesareavailableinMatlabandPython.ThesourcecodecanbefoundinthedirectoryMatlab/,Python/andJupyterNotebook,respectively.
Higherspatial-ordersareachievedbyaclassicalTaylorexpansion.
Forhighertemporal-orderstherearetwomethodsavailable:
Lax–Wendroffmethod(onlyin1-D).Theory:Dablain(1986)
Adams-Bashforthmethod.Theory:Bohlen&Wittkamp(2016)
ToexploretheinfluenceofdifferentordersofaccuracyyoucanrunthescriptFD_1D_compareorFD_2D_compare.
Moreover,in1-Dtherescriptstocalculateandplotthenumericaldispersionaswellasthenumericaldissipation(Adams-Bashforthmethod)areprovided.Uptonow,thisscriptsareMatlabonly.TheunderlyingtheoryisgiveninBohlen&Wittkamp(2016).
LiteratureBohlen,T.,&Wittkamp,F.(2016).Three-dimensionalviscoelastictime-domainfinite-differenceseismicmodelingusingthestaggeredAdams–Bashforthtimeintegrator.GeophysicalJournalInternational,204(3),1781-1788.
Dablain,M.A.(1986).Theapplicationofhigh-orderdifferencingtothescalarwaveequation.Geophysics,51(1),54-66.
Virieux,J.(1986).P-SVwavepropagationinheterogeneousmedia:Velocity-stressfinite-differencemethod.Geophysics,51(4),889-901.
LicenceThiscollectionisavailableundertheGNUGeneralPublicLicensev3.0.SeetheLICENCEfileformoreinformation.
评论