匿名用户2021年11月11日
27阅读
开发技术Python
所属分类人工智能、机器学习/深度学习
授权协议View license

作品详情

omega|ml-DataOps&MLOpsforhumans

withjustasinglelineofcodeyoucan

deploymachinelearningmodelsstraightfromJupyterNotebook(oranyothercode)implementdatapipelinesquickly,withoutmemorylimitation,allfromaPandas-likeAPIservemodelsanddatafromaneasytouseRESTAPI

Further,omega|mlisthefastestwayto

scalemodeltrainingontheincludedscalablepure-Pythoncomputecluster,onSparkoranyothercloudcollaborateondatascienceprojectseasily,sharingJupyterNotebooksdeploybeautifuldashboardsrightfromyourJupyterNotebook,usingdashserveLinksDocumentation:https://omegaml.github.io/omegaml/Contributions:https://bit.ly/omegaml-contributeGetstartedin<5minutes

Starttheomega|mlserverrightfromyourlaptoporvirtualmachine

$wgethttps://raw.githubusercontent.com/omegaml/omegaml/master/docker-compose.yml$docker-composeup-d

JupyterNotebookisimmediatelyavailableathttps://localhost:8899(omegamlisfuntologin).Anynotebookyoucreatewillautomaticallybestoredintheintegratedomega|mldatabase,makingcollaborationabreeze.TheRESTAPIisavailableathttps://localhost:5000.

AlreadyhaveaPythonenvironment(e.g.JupyterNotebook)?Leveragethepowerofomega|mlbyinstallingasfollows:

#assumingyouhavestartedtheserverasperabove$pipinstallomega|mlExamples

Getmoreinformationathttps://omegaml.github.io/omegaml/

#transparentlystorePandasSeriesandDataFramesoranyPythonobjectom.datasets.put(df,'stats')om.datasets.get('stats',sales__gte=100)#transparentlystoreandgetmodelsclf=LogisticRegression()om.models.put(clf,'forecast')clf=om.models.get('forecast')#runandscalemodelsdirectlyontheintegratedPythonorSparkcomputeclusterom.runtime.model('forecast').fit('stats[^sales]','stats[sales]')om.runtime.model('forecast').predict('stats')om.runtime.model('forecast').gridsearch(X,Y)#usetheRESTAPItostoreandretrievedata,runpredictionsrequests.put('/v1/dataset/stats',json={...})requests.get('/v1/dataset/stats?sales__gte=100')requests.put('/v1/model/forecast',json={...})UseCases

omega|mlcurrentlysupportsscikit-learn,KerasandTensorflowoutofthebox.Needtodeployamodelfromanotherframework?Openanissueathttps://github.com/omegaml/omegaml/issuesordropusalineatsupport@omegaml.io

MachineLearningDeploymentdeploymodelstoproductionwithasinglelineofcodeserveandusemodelsordatasetsfromaRESTAPIDataScienceCollaborationgetafullyintegrateddatascienceworkplacewithinminuteseasilysharemodels,data,jupyternotebooksandreportswithyourcollaboratorsCentralizedData&Computeclusterperformout-of-corecomputationsonapure-pythonorApacheSparkcomputeclusterhaveasharedNoSQLdatabase(MongoDB),outofthebox,workinglikeaPandasdataframeuseacomputeclustertotrainyourmodelswithnoadditionalsetupScalabilityandExtensibilityscaleyourdatascienceworkfromyourlaptoptoteamtoproductionwithnocodechangesintegrateanymachinelearningframeworkorthirdpartydatascienceplatformwithacommonAPI

TowardsDataSciencerecentlypublishedanarticleonomega|ml:https://towardsdatascience.com/omega-ml-deploying-data-machine-learning-pipelines-the-easy-way-a3d281569666

Inadditionomega|mlprovidesaneasy-to-useextensionsAPItosupportanykindofmodels,computecluster,databaseanddatasource.

EnterpriseEdition

https://omegaml.io

omega|mlEnterpriseEditionprovidessecurityoneverylevelandisreadymadeforKubernetesdeployment.Itislicensedseparatelyforon-premise,privateorhybridcloud.Signupathttps://omegaml.io

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论