FEAST开源项目

我要开发同款
匿名用户2021年11月23日
56阅读
所属分类、应用工具、科研计算工具
授权协议BSD-3-Clause License

作品详情

FEAST

AFEAtureSelectionToolboxforC/C++&MATLAB/OCTAVE,v2.0.0.

FEASTprovidesimplementationsofcommonmutualinformationbasedfilterfeatureselectionalgorithms,andanimplementationofRELIEF.Allfunctionsexpectdiscreteinputs(exceptRELIEF,whichdoesnotdependontheMIToolbox),andtheyreturntheselectedfeatureindices.Theseimplementationsweredevelopedtohelpourresearchintothesimilaritiesbetweenthesealgorithms,andourresultsarepresentedinthefollowingpaper:

ConditionalLikelihoodMaximisation:AUnifyingFrameworkforInformationTheoreticFeatureSelectionG.Brown,A.Pocock,M.-J.Zhao,M.LujanJournalofMachineLearningResearch,13:27-66(2012)

TheweightedfeatureselectionalgorithmsaredescribedinChapter7of:

FeatureSelectionviaJointLikelihoodA.PocockPhDThesis,UniversityofManchester,2012

Ifyouusetheseimplementationsforacademicresearchpleasecitetherelevantpaperabove.AllFEASTcodeislicensedundertheBSD3-ClauseLicense.

Containsimplementationsof:mim,mrmr,mifs,cmim,jmi,disr,cife,icap,condred,cmi,relief,fcbf,betagamma

Andweightedimplementationsof:mim,cmim,jmi,disr,cmi

Referencesforthesealgorithmsareprovidedintheaccompanyingfeast.bibfile(inBibTeXformat).

FEASTworksondiscreteinputs,andallcontinuousvaluesmustbediscretisedbeforeusewithFEAST.Inourexperimentswe'vefoundthatusing10equalwidthbinsissuitableformanyproblems,thoughthisisdatasetsizedependent.FEASTproducesunreliableresultswhenusedwithcontinuousinputs,runsslowlyandusesmuchmorememorythanusual.Thediscreteinputsshouldhavesmallcardinality,FEASTwilltreatvalues{1,10,100}thesamewayittreats{1,2,3}andthelatterwillbebothfasteranduselessmemory.

MATLABExample(using"data"asourfeaturematrix,and"labels"astheclasslabelvector):

>>size(data)ans=(569,30)%%denoting569examples,and30features>>selectedIndices=feast('jmi',5,data,labels)%%selectingthetop5featuresusingthejmialgorithmselectedIndices=282182723>>selectedIndices=feast('mrmr',10,data,labels)%%selectingthetop10featuresusingthemrmralgorithmselectedIndices=28242282721294725>>selectedIndices=feast('mifs',5,data,labels,0.7)%%selectingthetop5featuresusingthemifsalgorithmwithbeta=0.7selectedIndices=2824222029

ThelibraryiswritteninANSICforcompatibilitywiththeMATLABmexcompiler,exceptforMIM,FCBFandRELIEF,whicharewritteninMATLAB/OCTAVEscript.ThereisadifferentimplementationofMIMavailableforuseintheClibrary.

MIToolboxv3.0.0isrequiredtocompilethesealgorithms,andtheseimplementationssupercedetheexampleimplementationsgiveninthatpackage(theyhavemorerobustbehaviourwhenusedwithunexpectedinputs).

MIToolboxcanbefoundat:https://www.github.com/Craigacp/MIToolbox/

TheClibraryexpectsallmatricesincolumn-majorformat(i.e.Fortranstyle).Thisisfortworeasons,a)MATLABgeneratesFortran-stylearrays,andb)featureselectioniteratesovercolumnsratherthanrows,unlikemostotherMLprocesses.

Compilationinstructions:

MATLAB/OCTAVErunCompileFEAST.minthematlabfolder.LinuxCsharedlibraryrunmakex86ormakex64fora32-bitor64-bitlibrary.WindowsCdll(expectsprebuiltlibMIToolbox.dll)installMinGWfromhttps://sourceforge.net/projects/mingw-w64/addMinGWbinariesfolderstoPATH,e.g.mingw/bin,mingw/msys/binrunmakex64_win.Java(requiresJava8)runmakex64,sudomakeinstalltobuildandinstalltheClibrary.thenmakejavatobuildtheJNIwrapper.thenrunmvnpackageinthejavadirectorytobuildthejarfile.Note:theJavacodeshouldworkonallplatformsandfutureversionsofJava,buttheincludedMakefileonlyworksonUbuntu&Java8.

UpdateHistory

07/01/2017-v2.0.0-Addedweightedfeatureselection,majorrefactoringofthecodetoimprovespeedandportability.FEASTfunctionsnowreturntheinternalscoresassignedbyeachcriteriaaswell.AddedaJavaAPIviaJNI.FEASTv2isapproximately30%fasterwhencalledfromMatlab.12/03/2016-v1.1.4-FixedanissuewhereMatlabwouldsegfaultifallfeatureshadzeroMIwiththelabel.12/10/2014-v1.1.2-UpdateddocumentationtonotethatFEASTexpectscolumn-majormatrices.11/06/2014-v1.1.1-FixedanissuewhereMIMwasn'tcompiledintolibFSToolbox.22/02/2014-v1.1.0-Bugfixesinmemoryallocation,addedaCimplementationofMIM,movedtheselectedfeatureincrementintothemexcode.12/02/2013-v1.0.1-Bugfixfor32-bitWindowsMATLAB'slcc.08/11/2011-v1.0.0-PublicReleasetocomplementtheJMLRpublication.
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论