点击空白处退出提示
作品详情
视频质量诊断,之前由于数据不足,采用传统的方法进行检测,当前已经积累了一些数据,采用分类模型做了训练和检测工作,主要有:亮度异常检测、偏色检测、图像噪声检测、条纹噪声检测、清晰度检测、信号丢失检测、遮挡检测和对比度检测。具体的检测方法如下:
一、对每类数据进行整理,每类数据需要准备大概1w张数据左右;
二、选择分类网络,可以使用ResNet系列、DenseNet系列、VGGNet、Densenet系列的分类模型,根据自己的使用习惯,随意选择一款即可;
三、模型转化,当模型训练完毕后,想要封装成C++代码,最好先转成onnx的模型,之后通过opencv的接口进行调用,通过模型训练后,检测的精度可以达到90%以上。
四、结合传统算法,深度学习模型只能解决部分算法问题,还有一些算法需要使用传统的分析方法,具体的算法实现,还需要参考我的另一篇博客,这样可以完美解决当前项目的需求。
整个数据的筛选也比较耗时,把之前积攒的十几年的数据和自己搜集的数据,加上一些预处理工作,大概花了2个月的时间,目前算法已经是C++代码,只依赖了opencv库,也算小有成就。通过深度学习进行训练之后,整个算法精度比传统算法提高20%,基本满足了项目的需求。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态
评论