(1)提出了一种基于循环网络框架下的多目标追踪方法(RN-MOT),为解决基于城市交通场景下多目标跟踪算法的精确度较差问题提供了一种新的思路;(2)提出了一种集成学习结合压缩算法的框架,在损失极少精确性的前提下极大地提升了RN-MOT算法的检测及追踪速度;(3)测试了包含目标遮挡、镜头移动、目标较多等挑战场景下的视频序列以验证和优化RN-MOT算法;
评论