单目深度估计算法介绍
任务
输入一张单目RGB图像,单目深度估计算法将分析场景三维结构、输出图像对应的稠密深度图
模型描述
本模型基于NeW CRFs: Neural Window Fully-connected CRFs for Monocular Depth Estimation算法,是该算法的官方模型。
技术细节请见:
NeW CRFs: Neural Window Fully-connected CRFs for Monocular Depth Estimation
Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, Ping Tan
CVPR 2022
[Project Page] |
[Paper] |
[中文解读]
如何使用
代码示例
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.cv.image_utils import depth_to_color
task = 'image-depth-estimation'
model_id = 'damo/cv_newcrfs_image-depth-estimation_indoor'
input_location = 'data/test/images/image_depth_estimation.jpg'
estimator = pipeline(Tasks.image_depth_estimation, model=model_id)
result = estimator(input_location)
depth_vis = result[OutputKeys.DEPTHS_COLOR]
cv2.imwrite('result.jpg', depth_vis)
适用范围
默认输入图片的摄像机参数应与训练数据集(NYUv2)保持一直, 即分辨率为640x480,内参为
518.8579, 0.0, 320
0.0, 518.8579, 240
0.0, 0.0, 0.0
如输入图像不一致,请将输入图片矫正为上述参数,否则会影响结果准确性
模型精度
在NYUv2上的结果为
Model | Abs.Rel. | Sqr.Rel | RMSE | RMSElog | a1 | a2 | a3 | SILog |
---|---|---|---|---|---|---|---|---|
NYUv2 | 0.0952 | 0.0443 | 0.3310 | 0.1185 | 0.923 | 0.992 | 0.998 | 9.1023 |
Demo Video
Bibtex
@inproceedings{yuan2022newcrfs,
title={NeWCRFs: Neural Window Fully-connected CRFs for Monocular Depth Estimation},
author={Yuan, Weihao and Gu, Xiaodong and Dai, Zuozhuo and Zhu, Siyu and Tan, Ping},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={},
year={2022}
}
评论