多目标跟踪算法模型介绍
多目标跟踪算法通常由目标检测和目标重识别两个模块构成,FairMOT算法在单个网络中同时完成目标检测和重识别模块,可满足实时性要求。
期望模型使用方式以及适用范围
该模型适用于视频多目标跟踪行人场景,目前在2DMOT15数据集达到SOTA,在MOT16, MOT17, MOT20数据集上达到不错的效果。
依赖
pip install lap
代码范例
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.models.cv.video_multi_object_tracking.utils.visualization import show_multi_object_tracking_result
video_multi_object_tracking = pipeline(Tasks.video_multi_object_tracking, model='damo/cv_yolov5_video-multi-object-tracking_fairmot')
video_path = 'http://dmshared.oss-cn-hangzhou.aliyuncs.com/ljp/maas/mot_demo_resource/MOT17-03-partial.mp4?OSSAccessKeyId=LTAI5tC7NViXtQKpxFUpxd3a&Expires=2032715547&Signature=ROPQRkeOJqE3j8cBC0PEtkgdlzs%3D'
result = video_multi_object_tracking(video_path)
print('result is : ', result[OutputKeys.BOXES])
# show_multi_object_tracking_result(video_path, result[OutputKeys.BOXES], result[OutputKeys.LABELS], "mot_res.avi")
模型局限性以及可能的偏差
- 在遮挡严重场景和背景中存在与目标高度相似的物体场景下,目标跟踪精度可能欠佳。
- 建议在有GPU的机器上进行测试,由于硬件精度影响,CPU上的结果会和GPU上的结果略有差异。
训练数据介绍
本模型是基于以下开源数据集训练得到:
数据评估及结果
模型在MOT17的测试集集上客观指标如下:
Method | MOTA |
---|---|
FairMOT | 68.5 |
相关论文以及引用信息
本模型主要参考论文如下:
@article{zhang2021fairmot,
title={Fairmot: On the fairness of detection and re-identification in multiple object tracking},
author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
journal={International Journal of Computer Vision},
volume={129},
pages={3069--3087},
year={2021},
publisher={Springer}
}
评论