YOLOPV2全景驾驶感知模型介绍
YOLOPv2 适用于自动驾驶场景下的实时全景驾驶感知, 同时执行三种不同的任务,分别为车辆检测,可行驶区域分割以及车道线分割。
模型描述
YOLOPv2(官方代码) 是YOLOP(You Only Look Once for Panoptic Driving Perception)的升级版,输入一张图像,输出所有车辆区域检测框、可行驶区域(Drivable area)和车道线(Lane Line)分割图。可视化结果如下。
模型整体架构图如下:
使用方式和范围
使用方式:
- 输入任意分辨率图像,返回图像中的车辆坐标,可行驶区域及车道线二值化(0,1)数组,支持CPU/GPU 推理。
使用范围:
- 本模型适用于车载镜头视角下的自动驾驶场景,适合2D image 输入的任务。
如何使用
在ModelScope框架上,提供输入图片,即可通过简单的Pipeline调用来使用。
代码范例
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
img_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_driving_perception.jpg'
image_driving_perception_pipeline = pipeline(Tasks.image_driving_perception,
model='damo/cv_yolopv2_image-driving-perception_bdd100k')
result = image_driving_perception_pipeline(img_path)
# if you want to show the result, you can run
from modelscope.utils.cv.image_utils import show_image_driving_perception_result
import matplotlib.pyplot as plt
import cv2
from modelscope.preprocessors.image import LoadImage
output = './result.jpg'
img = LoadImage.convert_to_ndarray(img_path)
img_res = show_image_driving_perception_result(img, result,out_file=output)
plt.figure()
plt.imshow(img_res)
模型局限性以及可能的偏差
- 部分非常规图片(鱼眼环视图)或车辆遮挡严重可能会影响输出结果
- 模型暂不支持行人检测
训练数据介绍
- 使用BDD100K 数据集
数据评估及结果
模型在BDD100K验证集上分别对车辆检测、可驾驶区域分割及车道线分割进行评估,结果如下:
车辆检测
Model | mAP@0.5 (%) | Recall (%) |
---|---|---|
MultiNet |
60.2 | 81.3 |
DLT-Net |
68.4 | 89.4 |
Faster R-CNN |
55.6 | 77.2 |
YOLOv5s |
77.2 | 86.8 |
YOLOP |
76.5 | 89.2 |
HybridNets |
77.3 | 92.8 |
YOLOPv2 |
83.4(+6.1) | 91.1(-1.7) |
可驾驶区域分割
Model | Drivable mIoU (%) |
---|---|
MultiNet |
71.6 |
DLT-Net |
71.3 |
PSPNet |
89.6 |
YOLOP |
91.5 |
HybridNets |
90.5 |
YOLOPv2 |
93.2(+1.7) |
车道线分割
Model | Accuracy (%) | Lane Line IoU (%) |
---|---|---|
Enet |
34.12 | 14.64 |
SCNN |
35.79 | 15.84 |
Enet-SAD |
36.56 | 16.02 |
YOLOP |
70.5 | 26.2 |
HybridNets |
85.4 | 31.6 |
YOLOPv2 |
87.3(+1.9) | 27.2(-4.4) |
引用
@article{han2022yolopv2,
title={YOLOPv2: Better, Faster, Stronger for Panoptic Driving Perception},
author={Cheng Han, Qichao Zhao, Shuyi Zhang, Yinzi Chen, Zhenlin Zhang, Jinwei Yuan},
journal={arXiv preprint arXiv:2208.11434},
year={2022}
}
Clone with HTTP
git clone https://www.modelscope.cn/damo/cv_yolopv2_image-driving-perception_bdd100k.git
评论