Image Quality Assessment for UGC
模型描述
基于resnet的一个简单基线,可以有效评估图像的无参考画质,达到SOTA性能。其网络结构如下图所示:
image quality assessment |
期望模型使用方式以及适用范围
本模型适用于UGC图像的视觉质量评价,输出评价mos分,范围[0, 1],值越大代表图像质量越好。模型适用于1080P及以下分辨率图像质量评价。
如何使用
在ModelScope框架上,提供输入图片,即可通过简单的Pipeline调用来使用。
代码范例
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys
img = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/dogs.jpg'
image_quality_assessment_pipeline = pipeline(Tasks.image_quality_assessment_mos, 'damo/cv_resnet_image-quality-assessment-mos_youtubeUGC')
result = image_quality_assessment_pipeline(img)[OutputKeys.SCORE]
print(result)
模型局限性以及可能的偏差
由于训练数据为YouTube UGC Dataset,针对实拍ugc类的图像评价结果良好,而其他类型图像可能表现不佳。
验证数据介绍
YouTube UGC Dataset Validation sub
随机选择YouTube UGC Dataset中20%视频,每个视频抽取一帧生成验证输入图像,mos分采用视频对应值。
文件类型:.PNG
文件数量:221
内容:每幅图来自不同的视频,进模型前会进行前处理,mos分标签归一化到[0,1]
数据评估及结果
Dataset | PLCC | SRCC | RMSE |
---|---|---|---|
YouTube UGC | 0.8219 | 0.8224 | 0.0724 |
import os
import tempfile
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.utils.config import Config
from modelscope.utils.constant import DownloadMode, ModelFile
from modelscope.trainers import build_trainer
from modelscope.msdatasets import MsDataset
from modelscope.msdatasets.task_datasets.image_quality_assmessment_mos import \
ImageQualityAssessmentMosDataset
tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
model_id = 'damo/cv_resnet_image-quality-assessment-mos_youtubeUGC'
cache_path = snapshot_download(model_id)
config = Config.from_file(os.path.join(cache_path, ModelFile.CONFIGURATION))
dataset_val = MsDataset.load(
'vqa_mos_youtubeUGC_validation',
namespace='charlesHuang',
subset_name='subset',
split='train',
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS)._hf_ds
eval_dataset = ImageQualityAssessmentMosDataset(dataset_val, config.dataset)
kwargs = dict(
model=model_id,
train_dataset=None,
eval_dataset=eval_dataset,
work_dir=tmp_dir)
trainer = build_trainer(default_args=kwargs)
metric_values = trainer.evaluate()
print(metric_values)
Clone with HTTP
git clone https://www.modelscope.cn/damo/cv_resnet_image-quality-assessment-mos_youtubeUGC.git
相关论文以及引用信息
如果你觉得这个模型对你有所帮助,请考虑引用下面的相关论文:
@misc{wen2021strong,
title={A strong baseline for image and video quality assessment},
author={Shaoguo Wen and Junle Wang},
year={2021},
eprint={2111.07104},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
评论