燃灯-T5-784M

我要开发同款
匿名用户2024年07月31日
35阅读
所属分类ai、mt5、pytorch、sentencepiece、chinese、T5
开源地址https://modelscope.cn/models/Fengshenbang/Randeng-T5-784M
授权协议Apache License 2.0

作品详情

Randeng-T5-784M

简介 Brief Introduction

善于处理NLT任务,中文版的mT5-large。

Good at handling NLT tasks, Chinese mT5-large.

模型分类 Model Taxonomy

需求 Demand 任务 Task 系列 Series 模型 Model 参数 Parameter 额外 Extra
通用 General 自然语言转换 NLT 燃灯 Randeng mT5 784M 中文-Chinese

模型信息 Model Information

我们基于mT5-large,训练了它的中文版。为了加速训练,我们仅使用T5分词器(sentence piece)中的中英文对应的词表,并且使用了语料库自适应预训练(Corpus-Adaptive Pre-Training, CAPT)技术在悟道语料库(180G版本)继续预训练。预训练目标为破坏span。具体地,我们在预训练阶段中使用了封神框架大概花费了16张A100约96小时。

Based on mT5-large, we implement its Chinese version. In order to accelerate training, we only retrain the vocabulary and embedding corresponding to Chinese and English in T5tokenizer (sentence piece), and Corpus-Adaptive Pre-Training (CAPT) on the WuDao Corpora (180 GB version). The pretraining objective is span corruption. Specifically, we use the fengshen framework in the pre-training phase which cost about 96 hours with 16 A100 GPUs.

使用 Usage

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

pipeline_ins = pipeline(
        'text2text-generation',
        model='Fengshenbang/Randeng-T5-784M',
        model_revision='v1.0.0'
)

print(pipeline_ins('question:美国建筑师是怎样创造维多利亚哥特式建筑的?'))

引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的论文

If you are using the resource for your work, please cite the our paper:

@article{fengshenbang,
  author    = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}

也可以引用我们的网站:

You can also cite our website:

@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论