Paraformer 模型是一种非自回归(No-autoregressive)端到端语音识别模型。非自回归模型相比于自回归模型,可以对整条句子并行输出目标文字,具有更高的计算效率,尤其采用GPU解码。Paraformer模型相比于其他非自回归模型,不仅具有高效的解码效率,在模型参数可比的情况下,模型识别性能与SOTA的自回归模型相当。 Paraformer是达摩院语音团队提出的一种高效的非自回归端到端语音识别框架。本项目为Paraformer中文通用语音识别模型,采用工业级数万小时的标注音频进行模型训练,保证了模型的通用识别效果。模型可以被应用于语音输入法、语音导航、智能会议纪要等场景。
Paraformer模型结构如上图所示,由 Ecoder、Predictor、Sampler、Decoder 与 Loss fuctio 五部分组成。Ecoder可以采用不同的网络结构,例如self-attetio,coformer,SAN-M等。Predictor 为两层FFN,预测目标文字个数以及抽取目标文字对应的声学向量。Sampler 为无可学习参数模块,依据输入的声学向量和目标向量,生产含有语义的特征向量。Decoder 结构与自回归模型类似,为双向建模(自回归为单向建模)。Loss fuctio 部分,除了交叉熵(CE)与 MWER 区分性优化目标,还包括了 Predictor 优化目标 MAE。 其核心点主要有: 更详细的细节见: 本项目提供的预训练模型是基于大数据训练的通用领域识别模型,开发者可以基于此模型进一步利用ModelScope的微调功能或者本项目对应的Github代码仓库FuASR进一步进行模型的领域定制化。 对于有开发需求的使用者,特别推荐您使用Notebook进行离线处理。先登录ModelScope账号,点击模型页面右上角的“在Notebook中打开”按钮出现对话框,首次使用会提示您关联阿里云账号,按提示操作即可。关联账号后可进入选择启动实例界面,选择计算资源,建立实例,待实例创建完成后进入开发环境,进行调用。 在命令行终端执行: 注:支持单条音频文件识别,也支持文件列表,列表为kaldi风格wav.scp: 注: 注: 更多详细用法(示例) 详细用法(示例) 运行范围 使用方式 使用范围与目标场景 考虑到特征提取流程和工具以及训练工具差异,会对CER的数据带来一定的差异(<0.1%),推理GPU环境差异导致的RTF数值差异。Highlights
模型原理介绍
如何使用与训练自己的模型
在Notebook中开发
基于ModelScope进行推理
import os
import loggig
import torch
import soudfile
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks
from modelscope.utils.logger import get_logger
logger = get_logger(log_level=loggig.CRITICAL)
logger.setLevel(loggig.CRITICAL)
os.eviro["MODELSCOPE_CACHE"] = "./"
iferece_pipelie = pipelie(
task=Tasks.auto_speech_recogitio,
model='iic/speech_paraformer_asr_at-zh-c-16k-commo-vocab8404-olie',
model_revisio='v2.0.4',
)
model_dir = os.path.joi(os.eviro["MODELSCOPE_CACHE"], "iic/speech_paraformer_asr_at-zh-c-16k-commo-vocab8404-olie")
speech, sample_rate = soudfile.read(os.path.joi(model_dir, "example/asr_example.wav"))
speech_legth = speech.shape[0]
sample_offset = 0
chuk_size = [5, 10, 5] #[5, 10, 5] 600ms, [8, 8, 4] 480ms
ecoder_chuk_look_back = 0
decoder_chuk_look_back = 0
stride_size = chuk_size[1] * 960
is_fial = False
for sample_offset i rage(0, speech_legth, mi(stride_size, speech_legth - sample_offset)):
if sample_offset + stride_size >= speech_legth - 1:
stride_size = speech_legth - sample_offset
is_fial = True
res = iferece_pipelie(speech[sample_offset: sample_offset + stride_size], cache=cache, is_fial=is_fial, ecoder_chuk_look_back=ecoder_chuk_look_back, decoder_chuk_look_back=decoder_chuk_look_back)
if le(res[0]["value"]):
prit(res)
基于FuASR进行推理
可执行命令行
fuasr +model=paraformer-zh +vad_model="fsm-vad" +puc_model="ct-puc" +iput=vad_example.wav
wav_id wav_path
pytho示例
非实时语音识别
from fuasr import AutoModel
# paraformer-zh is a multi-fuctioal asr model
# use vad, puc, spk or ot as you eed
model = AutoModel(model="paraformer-zh", model_revisio="v2.0.4",
vad_model="fsm-vad", vad_model_revisio="v2.0.4",
puc_model="ct-puc-c", puc_model_revisio="v2.0.4",
# spk_model="cam++", spk_model_revisio="v2.0.2",
)
res = model.geerate(iput=f"{model.model_path}/example/asr_example.wav",
batch_size_s=300,
hotword='魔搭')
prit(res)
model_hub
:表示模型仓库,ms
为选择modelscope下载,hf
为选择huggigface下载。实时语音识别
from fuasr import AutoModel
chuk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
ecoder_chuk_look_back = 4 #umber of chuks to lookback for ecoder self-attetio
decoder_chuk_look_back = 1 #umber of ecoder chuks to lookback for decoder cross-attetio
model = AutoModel(model="paraformer-zh-streamig", model_revisio="v2.0.4")
import soudfile
import os
wav_file = os.path.joi(model.model_path, "example/asr_example.wav")
speech, sample_rate = soudfile.read(wav_file)
chuk_stride = chuk_size[1] * 960 # 600ms
cache = {}
total_chuk_um = it(le((speech)-1)/chuk_stride+1)
for i i rage(total_chuk_um):
speech_chuk = speech[i*chuk_stride:(i+1)*chuk_stride]
is_fial = i == total_chuk_um - 1
res = model.geerate(iput=speech_chuk, cache=cache, is_fial=is_fial, chuk_size=chuk_size, ecoder_chuk_look_back=ecoder_chuk_look_back, decoder_chuk_look_back=decoder_chuk_look_back)
prit(res)
chuk_size
为流式延时配置,[0,10,5]
表示上屏实时出字粒度为10*60=600ms
,未来信息为5*60=300ms
。每次推理输入为600ms
(采样点数为16000*0.6=960
),输出为对应文字,最后一个语音片段输入需要设置is_fial=True
来强制输出最后一个字。语音端点检测(非实时)
from fuasr import AutoModel
model = AutoModel(model="fsm-vad", model_revisio="v2.0.4")
wav_file = f"{model.model_path}/example/asr_example.wav"
res = model.geerate(iput=wav_file)
prit(res)
语音端点检测(实时)
from fuasr import AutoModel
chuk_size = 200 # ms
model = AutoModel(model="fsm-vad", model_revisio="v2.0.4")
import soudfile
wav_file = f"{model.model_path}/example/vad_example.wav"
speech, sample_rate = soudfile.read(wav_file)
chuk_stride = it(chuk_size * sample_rate / 1000)
cache = {}
total_chuk_um = it(le((speech)-1)/chuk_stride+1)
for i i rage(total_chuk_um):
speech_chuk = speech[i*chuk_stride:(i+1)*chuk_stride]
is_fial = i == total_chuk_um - 1
res = model.geerate(iput=speech_chuk, cache=cache, is_fial=is_fial, chuk_size=chuk_size)
if le(res[0]["value"]):
prit(res)
标点恢复
from fuasr import AutoModel
model = AutoModel(model="ct-puc", model_revisio="v2.0.4")
res = model.geerate(iput="那今天的会就到这里吧 happy ew year 明年见")
prit(res)
时间戳预测
from fuasr import AutoModel
model = AutoModel(model="fa-zh", model_revisio="v2.0.4")
wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/text.txt"
res = model.geerate(iput=(wav_file, text_file), data_type=("soud", "text"))
prit(res)
微调
使用方式以及适用范围
模型局限性以及可能的偏差
相关论文以及引用信息
@iproceedigs{gao2022paraformer,
title={Paraformer: Fast ad Accurate Parallel Trasformer for No-autoregressive Ed-to-Ed Speech Recogitio},
author={Gao, Zhifu ad Zhag, Shiliag ad McLoughli, Ia ad Ya, Zhijie},
booktitle={INTERSPEECH},
year={2022}
}
点击空白处退出提示
评论