bloomz-6b4-mt-zh

我要开发同款
匿名用户2024年07月31日
31阅读
所属分类ai、bloom
开源地址https://modelscope.cn/models/ticoAg/bloomz-6b4-mt-zh

作品详情

项目地址:LLMPruner:大语言模型裁剪工具

LLMPruner是一个大语言模型裁剪工具,通过对大语言模型的冗余词表进行裁剪,减少模型参数量,降低显存占用,提升训练速度,并且能够保留预训练中学习到的知识。

本项目对Bloom进行词表裁剪,保留中文token和常用的英文token,词表由250880将至46145,缩减为原来的18.39%。裁剪得到的Bloom模型如下表:

裁剪模型 原模型 参数量比例
YeungNLP/bloom-396m-zh bigscience/bloom-560m 70.96%
YeungNLP/bloom-820m-zh bigscience/bloom-1b1 77.13%
YeungNLP/bloom-1b4-zh bigscience/bloom-1b7 81.14%
YeungNLP/bloom-2b6-zh bigscience/bloom-3b 86.48%
YeungNLP/bloom-6b4-zh bigscience/bloom-7b1 90.81%
YeungNLP/bloomz-396m-zh bigscience/bloomz-560m 70.96%
YeungNLP/bloomz-820m-zh bigscience/bloomz-1b1 77.13%
YeungNLP/bloomz-1b4-zh bigscience/bloomz-1b7 81.14%
YeungNLP/bloomz-2b6-zh bigscience/bloomz-3b 86.48%
YeungNLP/bloomz-6b4-zh bigscience/bloomz-7b1 90.81%
YeungNLP/bloomz-6b4-mt-zh bigscience/bloomz-7b1-mt 90.81%

使用方法:

from transformers import BloomTokenizerFast, BloomForCausalLM

tokenizer = BloomTokenizerFast.from_pretrained('YeungNLP/bloom-1b4-zh')
model = BloomForCausalLM.from_pretrained('YeungNLP/bloom-1b4-zh')
print(tokenizer.batch_decode(model.generate(tokenizer.encode('长风破浪会有时', return_tensors='pt'))))
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论