PolyLM-指令精调-文本生成模型-多语言-13B

我要开发同款
匿名用户2024年07月31日
25阅读
所属分类ai、gpt2、Pytorch、transformer、nlp
开源地址https://modelscope.cn/models/iic/nlp_polylm_multialpaca_13b_text_generation
授权协议Apache License 2.0

作品详情

PolyLM多语言文本生成模型(Demo-演示

模型简介

PolyLM是一个通晓多种语言的大规模语言模型,涵盖中文、英文、西班牙语、法语、德语、俄语、葡萄牙语、意大利语、阿拉伯语、日语、韩语、泰语、越南语和印尼语等18个语言。该模型可以应用于对话问答、文本生成、机器翻译和情感分析等领域,能够自动生成高质量的多语言文本,从而为跨语言、文化的交流提供便利。

Abstract in English

Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English.

Our models, alone with the multilingual instruction data, are available at Github and Huggingface.

模型版本

本项目提供了一系列不同规模和用途的模型,参数规模包括1.7B/13B版本(当前模型为13B版本),同时涵盖了预训练底座模型以及指令精调后的Chat版本(即MultiAlpaca系列)。全部版本如下表所示:

Model Precision Layers Heads Hidden Max_length LR Batch Type
PolyLM-1.7B bfloat16 24 16 2048 2048 1.0e-4 4M Pretrain Model
PolyLM-13B bfloat16 40 40 5120 2048 6.0e-5 4M Pretrain Model
PolyLM-MultiAlpaca-13B bfloat16 40 40 5120 2048 6.0e-5 4M Chat Model
PolyLM-Assistant-13B bfloat16 40 40 5120 2048 6.0e-5 4M Chat Model

实验结果

nlu_results
多语言理解实验结果
nlu_results
多语言问答和机器翻译实验结果

训练数据

该模型以PolyLM-13B预训练模型为底座,在MutliAlpaca数据上指令微调得到。

模型下载

 git lfs install
 git clone https://www.modelscope.cn/damo/nlp_polylm_multialpaca_13b_text_generation.git

模型使用

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

polylm_multialpaca_13b_model_id = 'damo/nlp_polylm_multialpaca_13b_text_generation'
input_text = f"Beijing is the capital of China.\nTranslate this sentence from English to Chinese."

kwargs = {
    "do_sample": True,
    "top_p": 0.8,
    "temperature": 0.7,
    "repetition_penalty": 1.02,
    "max_new_tokens": 128,
    "num_return_sequences": 1,
    "early_stopping": True,
    "eos_token_id": 2
}

pipeline_ins = pipeline(Tasks.text_generation, model=polylm_multialpaca_13b_model_id)

result = pipeline_ins(f"{input_text}\n\n", **kwargs)
print(result['text'])

论文引用

如果你觉得这个该模型对有所帮助,请考虑引用下面的相关的论文:

@misc{wei2023polylm,
      title={PolyLM: An Open Source Polyglot Large Language Model}, 
      author={Xiangpeng Wei and Haoran Wei and Huan Lin and Tianhao Li and Pei Zhang and Xingzhang Ren and Mei Li and Yu Wan and Zhiwei Cao and Binbin Xie and Tianxiang Hu and Shangjie Li and Binyuan Hui and Bowen Yu and Dayiheng Liu and Baosong Yang and Fei Huang and Jun Xie},
      year={2023},
      eprint={2307.06018},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论