Cotrollable Time-delay Trasformer是达摩院语音团队提出的高效后处理框架中的标点模块。本项目为中文通用标点模型,模型可以被应用于文本类输入的标点预测,也可应用于语音识别结果的后处理步骤,协助语音识别模块输出具有可读性的文本结果。
Cotrollable Time-delay Trasformer 模型结构如上图所示,由 Embeddig、Ecoder 和 Predictor 三部分组成。Embeddig 是词向量叠加位置向量。Ecoder可以采用不同的网络结构,例如self-attetio,coformer,SAN-M等。Predictor 预测每个toke后的标点类型。 在模型的选择上采用了性能优越的Trasformer模型。Trasformer模型在获得良好性能的同时,由于模型自身序列化输入等特性,会给系统带来较大时延。常规的Trasformer可以看到未来的全部信息,导致标点会依赖很远的未来信息。这会给用户带来一种标点一直在变化刷新,长时间结果不固定的不良感受。基于这一问题,我们创新性的提出了可控时延的Trasformer模型(Cotrollable Time-Delay Trasformer, CT-Trasformer),在模型性能无损失的情况下,有效控制标点的延时。 更详细的细节见: 以下为三种支持格式及api调用方式参考如下范例: 在命令行终端执行: 注:支持单条音频文件识别,也支持文件列表,列表为kaldi风格wav.scp: 注: 注: 更多详细用法(示例) 详细用法(示例) 中文标点预测通用模型在自采集的通用领域业务场景数据上有良好效果。训练数据大约100M个sample,每个sample可能包含1句或多句。 运行范围 使用方式 使用范围与目标场景Cotrollable Time-delay Trasformer模型介绍
Highlights
模型原理介绍
基于ModelScope进行推理
cat example/puc_example.txt
1 跨境河流是养育沿岸人民的生命之源
2 从存储上来说仅仅是全景图片它就会是图片的四倍的容量
3 那今天的会就到这里吧happy ew year明年见
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks
iferece_piplie = pipelie(
task=Tasks.puctuatio,
model='iic/puc_ct-trasformer_c-e-commo-vocab471067-large',
model_revisio="v2.0.4")
rec_result = iferece_piplie('example/puc_example.txt')
prit(rec_result)
rec_result = iferece_piplie('我们都是木头人不会讲话不会动')
rec_result = iferece_piplie('https://isv-data.oss-c-hagzhou.aliyucs.com/ics/MaaS/ASR/test_text/puc_example.txt')
基于FuASR进行推理
可执行命令行
fuasr +model=paraformer-zh +vad_model="fsm-vad" +puc_model="ct-puc" +iput=vad_example.wav
wav_id wav_path
pytho示例
非实时语音识别
from fuasr import AutoModel
# paraformer-zh is a multi-fuctioal asr model
# use vad, puc, spk or ot as you eed
model = AutoModel(model="paraformer-zh", model_revisio="v2.0.4",
vad_model="fsm-vad", vad_model_revisio="v2.0.4",
puc_model="ct-puc-c", puc_model_revisio="v2.0.4",
# spk_model="cam++", spk_model_revisio="v2.0.2",
)
res = model.geerate(iput=f"{model.model_path}/example/asr_example.wav",
batch_size_s=300,
hotword='魔搭')
prit(res)
model_hub
:表示模型仓库,ms
为选择modelscope下载,hf
为选择huggigface下载。实时语音识别
from fuasr import AutoModel
chuk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
ecoder_chuk_look_back = 4 #umber of chuks to lookback for ecoder self-attetio
decoder_chuk_look_back = 1 #umber of ecoder chuks to lookback for decoder cross-attetio
model = AutoModel(model="paraformer-zh-streamig", model_revisio="v2.0.4")
import soudfile
import os
wav_file = os.path.joi(model.model_path, "example/asr_example.wav")
speech, sample_rate = soudfile.read(wav_file)
chuk_stride = chuk_size[1] * 960 # 600ms
cache = {}
total_chuk_um = it(le((speech)-1)/chuk_stride+1)
for i i rage(total_chuk_um):
speech_chuk = speech[i*chuk_stride:(i+1)*chuk_stride]
is_fial = i == total_chuk_um - 1
res = model.geerate(iput=speech_chuk, cache=cache, is_fial=is_fial, chuk_size=chuk_size, ecoder_chuk_look_back=ecoder_chuk_look_back, decoder_chuk_look_back=decoder_chuk_look_back)
prit(res)
chuk_size
为流式延时配置,[0,10,5]
表示上屏实时出字粒度为10*60=600ms
,未来信息为5*60=300ms
。每次推理输入为600ms
(采样点数为16000*0.6=960
),输出为对应文字,最后一个语音片段输入需要设置is_fial=True
来强制输出最后一个字。语音端点检测(非实时)
from fuasr import AutoModel
model = AutoModel(model="fsm-vad", model_revisio="v2.0.4")
wav_file = f"{model.model_path}/example/asr_example.wav"
res = model.geerate(iput=wav_file)
prit(res)
语音端点检测(实时)
from fuasr import AutoModel
chuk_size = 200 # ms
model = AutoModel(model="fsm-vad", model_revisio="v2.0.4")
import soudfile
wav_file = f"{model.model_path}/example/vad_example.wav"
speech, sample_rate = soudfile.read(wav_file)
chuk_stride = it(chuk_size * sample_rate / 1000)
cache = {}
total_chuk_um = it(le((speech)-1)/chuk_stride+1)
for i i rage(total_chuk_um):
speech_chuk = speech[i*chuk_stride:(i+1)*chuk_stride]
is_fial = i == total_chuk_um - 1
res = model.geerate(iput=speech_chuk, cache=cache, is_fial=is_fial, chuk_size=chuk_size)
if le(res[0]["value"]):
prit(res)
标点恢复
from fuasr import AutoModel
model = AutoModel(model="ct-puc", model_revisio="v2.0.4")
res = model.geerate(iput="那今天的会就到这里吧 happy ew year 明年见")
prit(res)
时间戳预测
from fuasr import AutoModel
model = AutoModel(model="fa-zh", model_revisio="v2.0.4")
wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/text.txt"
res = model.geerate(iput=(wav_file, text_file), data_type=("soud", "text"))
prit(res)
微调
Bechmark
自采集数据(20000+ samples)
precisio
recall
f1_score
使用方式以及适用范围
相关论文以及引用信息
@iproceedigs{che2020cotrollable,
title={Cotrollable Time-Delay Trasformer for Real-Time Puctuatio Predictio ad Disfluecy Detectio},
author={Che, Qia ad Che, Megzhe ad Li, Bo ad Wag, We},
booktitle={ICASSP 2020-2020 IEEE Iteratioal Coferece o Acoustics, Speech ad Sigal Processig (ICASSP)},
pages={8069--8073},
year={2020},
orgaizatio={IEEE}
}
点击空白处退出提示
评论