首个开源的中文BLIP2模型。我们遵循BLIP2的实验设置,采用itc、itm、lm损失,基于2亿中文图文对训练5个epoch,得到第一个中文版本的blip2模型。 The first ope source Chiese BLIP2. We follow the experimetal setup of BLIP2, we adopted itc, itm ad lm losses, traied 5 epochs based o 200 millio Chiese image pairs, ad obtaied the first Chiese versio of BLIP2. BLIP2-Qformer
简介 Brief Itroductio
下游效果 Performace
model
COCO-CN
Flickr30k-CN
c_clip
60.4
80.2
c_blip2(ours)
70.3
85.7
model
COCO-CN
Flickr30k-CN
c_clip
64.0
68.0
c_blip2(ours)
71.4
70.46
使用 Usage
from modelscope.hub.sapshot_dowload import sapshot_dowload
model_path = sapshot_dowload('xiajipeg123/BLIP2-Chiese',revisio='v1.0.0')
import os
os.chdir(model_path)
import sys
sys.path.isert(0, model_path)
import ms_wrapper
from modelscope.pipelies import pipelie
img = [f"{model_path}/test1.jpg",f"{model_path}/test3.jpg"]
txt=["两台汽车","白色标记","两辆汽车停在公路上","两只小鸟在树上"]
iput_dict=dict()
iput_dict['img']=img
iput_dict['text']=txt
weight_path = f"{model_path}/checkpoit_04.pth"
iferece = pipelie('image-text-retrieval', model='xiajipeg123/BLIP2-Chiese',model_revisio='v1.0.0', weight_path=weight_path,device="cuda") # GPU环境可以设置为True
output = iferece(iput_dict)
prit(output)
git cloe https://www.modelscope.c/xiajipeg123/BLIP2-Chiese.git
使用方式及场景
使用方式:
使用场景:
模型局限性以及可能的偏差
如果喜欢,敬请下载收藏!
点击空白处退出提示
评论