WizardLM-7B-V1.0

我要开发同款
匿名用户2024年07月31日
43阅读
所属分类ai、llama、pytorch
开源地址https://modelscope.cn/models/AI-ModelScope/WizardLM-7B-V1.0

作品详情

The WizardLM delta weights.

WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions

? HF Repo • ? Twitter • ? [WizardLM] • ? [WizardCoder] • ? [WizardMath]

? Join our Discord

Model Checkpoint Paper HumanEval MBPP Demo License
WizardCoder-Python-34B-V1.0 ? HF Link ? [WizardCoder] 73.2 61.2 Demo Llama2
WizardCoder-15B-V1.0 ? HF Link ? [WizardCoder] 59.8 50.6 -- OpenRAIL-M
WizardCoder-Python-13B-V1.0 ? HF Link ? [WizardCoder] 64.0 55.6 -- Llama2
WizardCoder-3B-V1.0 ? HF Link ? [WizardCoder] 34.8 37.4 Demo OpenRAIL-M
WizardCoder-1B-V1.0 ? HF Link ? [WizardCoder] 23.8 28.6 -- OpenRAIL-M
Model Checkpoint Paper GSM8k MATH Online Demo License
WizardMath-70B-V1.0 ? HF Link ? [WizardMath] 81.6 22.7 Demo Llama 2
WizardMath-13B-V1.0 ? HF Link ? [WizardMath] 63.9 14.0 Demo Llama 2
WizardMath-7B-V1.0 ? HF Link ? [WizardMath] 54.9 10.7 Demo Llama 2

Model Checkpoint Paper MT-Bench AlpacaEval WizardEval HumanEval License
WizardLM-13B-V1.2 ? HF Link 7.06 89.17% 101.4% 36.6 pass@1 Llama 2 License
WizardLM-13B-V1.1 ? HF Link 6.76 86.32% 99.3% 25.0 pass@1 Non-commercial
WizardLM-30B-V1.0 ? HF Link 7.01 97.8% 37.8 pass@1 Non-commercial
WizardLM-13B-V1.0 ? HF Link 6.35 75.31% 89.1% 24.0 pass@1 Non-commercial
WizardLM-7B-V1.0 ? HF Link ? [WizardLM] 78.0% 19.1 pass@1 Non-commercial

Example code

```python import torch from modelscope import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.frompretrained("AI-ModelScope/WizardLM-7B-V1.0", revision='v1.0.1', devicemap='auto', torchdtype=torch.float16) tokenizer = AutoTokenizer.frompretrained("AI-ModelScope/WizardLM-7B-V1.0", revision='v1.0.1')

prompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Who are you? ASSISTANT: """ inputs = tokenizer(prompt, padding=False, addspecialtokens=False, return_tensors="pt")

Generate

generateids = model.generate( inputs.inputids.to(model.device), attentionmask=inputs['attentionmask'].to(model.device), dosample=True, topk=10, temperature=0.1, topp=0.95, numreturnsequences=1, eostokenid=tokenizer.eostokenid, maxlength=200) print(tokenizer.batchdecode(generateids, skipspecialtokens=True, cleanuptokenization_spaces=False)[0]) ```

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论