The WizardLM delta weights.
WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions
? HF Repo • ? Twitter • ? [WizardLM] • ? [WizardCoder] • ? [WizardMath]
? Join our Discord
Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License |
---|---|---|---|---|---|---|
WizardCoder-Python-34B-V1.0 | ? HF Link | ? [WizardCoder] | 73.2 | 61.2 | Demo | Llama2 |
WizardCoder-15B-V1.0 | ? HF Link | ? [WizardCoder] | 59.8 | 50.6 | -- | OpenRAIL-M |
WizardCoder-Python-13B-V1.0 | ? HF Link | ? [WizardCoder] | 64.0 | 55.6 | -- | Llama2 |
WizardCoder-3B-V1.0 | ? HF Link | ? [WizardCoder] | 34.8 | 37.4 | Demo | OpenRAIL-M |
WizardCoder-1B-V1.0 | ? HF Link | ? [WizardCoder] | 23.8 | 28.6 | -- | OpenRAIL-M |
Model | Checkpoint | Paper | GSM8k | MATH | Online Demo | License |
---|---|---|---|---|---|---|
WizardMath-70B-V1.0 | ? HF Link | ? [WizardMath] | 81.6 | 22.7 | Demo | Llama 2 |
WizardMath-13B-V1.0 | ? HF Link | ? [WizardMath] | 63.9 | 14.0 | Demo | Llama 2 |
WizardMath-7B-V1.0 | ? HF Link | ? [WizardMath] | 54.9 | 10.7 | Demo | Llama 2 |
Model | Checkpoint | Paper | MT-Bench | AlpacaEval | WizardEval | HumanEval | License |
---|---|---|---|---|---|---|---|
WizardLM-13B-V1.2 | ? HF Link | 7.06 | 89.17% | 101.4% | 36.6 pass@1 | Llama 2 License | |
WizardLM-13B-V1.1 | ? HF Link | 6.76 | 86.32% | 99.3% | 25.0 pass@1 | Non-commercial | |
WizardLM-30B-V1.0 | ? HF Link | 7.01 | 97.8% | 37.8 pass@1 | Non-commercial | ||
WizardLM-13B-V1.0 | ? HF Link | 6.35 | 75.31% | 89.1% | 24.0 pass@1 | Non-commercial | |
WizardLM-7B-V1.0 | ? HF Link | ? [WizardLM] | 78.0% | 19.1 pass@1 | Non-commercial | ||
Example code
```python import torch from modelscope import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.frompretrained("AI-ModelScope/WizardLM-7B-V1.0", revision='v1.0.1', devicemap='auto', torchdtype=torch.float16) tokenizer = AutoTokenizer.frompretrained("AI-ModelScope/WizardLM-7B-V1.0", revision='v1.0.1')
prompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Who are you? ASSISTANT: """ inputs = tokenizer(prompt, padding=False, addspecialtokens=False, return_tensors="pt")
Generate
generateids = model.generate( inputs.inputids.to(model.device), attentionmask=inputs['attentionmask'].to(model.device), dosample=True, topk=10, temperature=0.1, topp=0.95, numreturnsequences=1, eostokenid=tokenizer.eostokenid, maxlength=200) print(tokenizer.batchdecode(generateids, skipspecialtokens=True, cleanuptokenization_spaces=False)[0]) ```
评论