WizardCoder-1B-V1.0

我要开发同款
匿名用户2024年07月31日
45阅读

技术信息

开源地址
https://modelscope.cn/models/AI-ModelScope/WizardCoder-1B-V1.0
授权协议
bigcode-openrail-m

作品详情

? HF Repo •? Github Repo • ? Twitter • ? [WizardLM] • ? [WizardCoder] • ? [WizardMath]

? Joi our Discord

News

  • ???[2023/08/26] We released WizardCoder-Pytho-34B-V1.0 , which achieves the 73.2 pass@1 ad surpasses GPT4 (2023/03/15), ChatGPT-3.5, ad Claude2 o the HumaEval Bechmarks.
  • [2023/06/16] We released WizardCoder-15B-V1.0 , which achieves the 57.3 pass@1 ad surpasses Claude-Plus (+6.8), Bard (+15.3) ad IstructCodeT5+ (+22.3) o the HumaEval Bechmarks.

❗Note: There are two HumaEval results of GPT4 ad ChatGPT-3.5. The 67.0 ad 48.1 are reported by the official GPT4 Report (2023/03/15) of OpeAI. The 82.0 ad 72.5 are tested by ourselves with the latest API (2023/08/26).

Model Checkpoit Paper HumaEval MBPP Demo Licese
WizardCoder-Pytho-34B-V1.0 ? HF Lik ? [WizardCoder] 73.2 61.2 Demo Llama2
WizardCoder-15B-V1.0 ? HF Lik ? [WizardCoder] 59.8 50.6 -- OpeRAIL-M
WizardCoder-Pytho-13B-V1.0 ? HF Lik ? [WizardCoder] 64.0 55.6 -- Llama2
WizardCoder-3B-V1.0 ? HF Lik ? [WizardCoder] 34.8 37.4 Demo OpeRAIL-M
WizardCoder-1B-V1.0 ? HF Lik ? [WizardCoder] 23.8 28.6 -- OpeRAIL-M
  • Our WizardMath-70B-V1.0 model slightly outperforms some closed-source LLMs o the GSM8K, icludig ChatGPT 3.5, Claude Istat 1 ad PaLM 2 540B.
  • Our WizardMath-70B-V1.0 model achieves 81.6 pass@1 o the GSM8k Bechmarks, which is 24.8 poits higher tha the SOTA ope-source LLM, ad achieves 22.7 pass@1 o the MATH Bechmarks, which is 9.2 poits higher tha the SOTA ope-source LLM.

Model Checkpoit Paper GSM8k MATH Olie Demo Licese
WizardMath-70B-V1.0 ? HF Lik ? [WizardMath] 81.6 22.7 Demo Llama 2
WizardMath-13B-V1.0 ? HF Lik ? [WizardMath] 63.9 14.0 Demo Llama 2
WizardMath-7B-V1.0 ? HF Lik ? [WizardMath] 54.9 10.7 Demo Llama 2

Model Checkpoit Paper MT-Bech AlpacaEval GSM8k HumaEval Licese
WizardLM-70B-V1.0 ? HF Lik ?Comig Soo 7.78 92.91% 77.6% 50.6 Llama 2 Licese
WizardLM-13B-V1.2 ? HF Lik 7.06 89.17% 55.3% 36.6 Llama 2 Licese
WizardLM-13B-V1.1 ? HF Lik 6.76 86.32% 25.0 No-commercial
WizardLM-30B-V1.0 ? HF Lik 7.01 37.8 No-commercial
WizardLM-13B-V1.0 ? HF Lik 6.35 75.31% 24.0 No-commercial
WizardLM-7B-V1.0 ? HF Lik ? [WizardLM] 19.1 No-commercial

Comparig WizardCoder-Pytho-34B-V1.0 with Other LLMs.

? The followig figure shows that our WizardCoder-Pytho-34B-V1.0 attais the secod positio i this bechmark, surpassig GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) ad Claude2 (73.2 vs. 71.2).

WizardCoder

Prompt Format

"Below is a istructio that describes a task. Write a respose that appropriately completes the request.\\### Istructio:\{istructio}\\### Respose:"

Example code

import torch
from modelscope import AutoModelForCausalLM, AutoTokeizer


model = AutoModelForCausalLM.from_pretraied("AI-ModelScope/WizardCoder-1B-V1.0", revisio='v1.0.0', device_map='auto', torch_dtype=torch.float16)
tokeizer = AutoTokeizer.from_pretraied("AI-ModelScope/WizardCoder-1B-V1.0", revisio='v1.0.0')

prompt = """Below is a istructio that describes a task. Write a respose that appropriately completes the request.

### Istructio:
Write a Jave code to sum 1 to 10.

### Respose:"""
iputs = tokeizer(prompt, paddig=False, add_special_tokes=False, retur_tesors="pt")

# Geerate
geerate_ids = model.geerate(
    iputs.iput_ids.to(model.device), 
    attetio_mask=iputs['attetio_mask'].to(model.device), 
    do_sample=True,
    top_k=10,
    temperature=0.1,
    top_p=0.95,
    um_retur_sequeces=1,
    eos_toke_id=tokeizer.eos_toke_id,
    max_legth=200)
prit(tokeizer.batch_decode(geerate_ids, skip_special_tokes=True, clea_up_tokeizatio_spaces=False)[0])

Iferece Demo Script

We provide the iferece demo code here.

Note: This script supports WizardLM/WizardCoder-Pytho-34B/13B/7B-V1.0. If you wat to iferece with WizardLM/WizardCoder-15B/3B/1B-V1.0, please chage the stop_tokes = ['</s>'] to stop_tokes = ['<|edoftext|>'] i the script.

Citatio

Please cite the repo if you use the data, method or code i this repo.

@misc{luo2023wizardcoder,
      title={WizardCoder: Empowerig Code Large Laguage Models with Evol-Istruct}, 
      author={Ziyag Luo ad Ca Xu ad Pu Zhao ad Qigfeg Su ad Xiubo Geg ad Wexiag Hu ad Chogyag Tao ad Jig Ma ad Qigwei Li ad Daxi Jiag},
      year={2023},
}

功能介绍

? HF Repo •? Github Repo • ? Twitter • ? [WizardLM] • ? [WizardCoder] • ? [WizardMath] ?

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论