CodeFuse-13B

我要开发同款
匿名用户2024年07月31日
99阅读

技术信息

官网地址
https://github.com/codefuse-ai
开源地址
https://modelscope.cn/models/codefuse-ai/CodeFuse-13B
授权协议
other

作品详情

Model Card for CodeFuse-13B

[中文] [Eglish]

Model Descriptio

CodeFuse-13B is a 13 billio parameter code geeratio model traied o the GPT-NeoX framework, capable of hadlig code sequeces of up to 4096 characters. This model was pretraied o a dataset cosistig of 1000B toke code, Chiese, ad Eglish data, coverig over 40 programmig laguages. To further ehace the effectiveess ad quality of the geerated code, the model was fie-tued o the CodeFuse-Evol-istructio-66k dataset, eablig it to produce more accurate, efficiet, ad compliat code. Pass@1 achieved 37.1% o the HumaEval evaluatio set(BeamSearch strategy, BeamSize=3).

Code Commuity

Homepage: ? https://github.com/codefuse-ai (Please give us your support with a Star? + Fork? + Watch?)

  • If you wish to fie-tue the model yourself, you ca visit ✨MFTCoder✨✨

  • If you wish to deploy the model yourself, you ca visit ✨FasterTrasformer4CodeFuse✨✨

  • If you wish to see a demo of the model, you ca visit ✨CodeFuse Demo✨✨

Requiremets

  • Pytho 3.8 or above.
  • PyTorch 1.12 or above, with a recommedatio for 2.0 or above.
  • Trasformers 4.24.0 or above.
  • It is advisable to use CUDA 11.4 or above (for GPU users ad flash-attetio users, this optio should be cosidered).

Quickstart

import torch
from modelscope import AutoModelForCausalLM, AutoTokeizer, sapshot_dowload

model_dir = sapshot_dowload('codefuse-ai/CodeFuse-13B', revisio='v1.0.0')
tokeizer = AutoTokeizer.from_pretraied(model_dir)
model = AutoModelForCausalLM.from_pretraied(model_dir, device_map="auto", torch_dtype=torch.float16).eval()

iput_ids = tokeizer.ecode("# laguage: Pytho\def quick_sort(array):\", retur_tesors="pt").to("cuda")
output_ids = model.geerate(iput_ids, max_ew_tokes=200)

prit(tokeizer.decode(output_ids[0]))

MD5

We otice that the file may be corrupted durig trasfer process. Please check MD5 value before use.

Model File MD5 Value
pytorch_model-00001-of-00006.bi b79e4ccc93c40fa6113aaf6a434473d5
pytorch_model-00002-of-00006.bi 5a82f19e3f62c693e41fe627084c722b
pytorch_model-00003-of-00006.bi d4b53c391a353d0fc0a1be1c913d5f04
pytorch_model-00004-of-00006.bi f9e3dcdea13ff02f4e3aad4f9db7a33f
pytorch_model-00005-of-00006.bi 698a8f2f05723a572193733bce12eb93
pytorch_model-00006-of-00006.bi 312439d0b810f1bb81034fe094ff84c7

简介

CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Toke的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-istructio-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumaEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。

代码社区

大本营: ? https://github.com/codefuse-ai (请支持我们的项目 Star?&bsp;+ Fork? + Watch?

要求

  • pytho 3.8及以上版本
  • pytorch 1.12及以上版本,推荐2.0及以上版本
  • trasformers 4.24.0及以上版本
  • 建议使用CUDA 11.4及以上(GPU用户、flash-attetio用户等需考虑此选

快速使用

import torch
from modelscope import AutoModelForCausalLM, AutoTokeizer, sapshot_dowload

model_dir = sapshot_dowload('codefuse-ai/CodeFuse-13B', revisio='v1.0.0')
tokeizer = AutoTokeizer.from_pretraied(model_dir)
model = AutoModelForCausalLM.from_pretraied(model_dir, device_map="auto", torch_dtype=torch.float16).eval()

iput_ids = tokeizer.ecode("# laguage: Pytho\def quick_sort(array):\", retur_tesors="pt").to("cuda")
output_ids = model.geerate(iput_ids, max_ew_tokes=200)

prit(tokeizer.decode(output_ids[0]))

MD5

我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。

模型文件 MD5值
pytorch_model-00001-of-00006.bi b79e4ccc93c40fa6113aaf6a434473d5
pytorch_model-00002-of-00006.bi 5a82f19e3f62c693e41fe627084c722b
pytorch_model-00003-of-00006.bi d4b53c391a353d0fc0a1be1c913d5f04
pytorch_model-00004-of-00006.bi f9e3dcdea13ff02f4e3aad4f9db7a33f
pytorch_model-00005-of-00006.bi 698a8f2f05723a572193733bce12eb93
pytorch_model-00006-of-00006.bi 312439d0b810f1bb81034fe094ff84c7

功能介绍

Model Card for CodeFuse-13B [中文] [English] Model Description CodeFuse-13B is a 13 billion

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论