匿名用户2024年07月31日
33阅读
所属分类ai、xglm、pytorchjavascriptpython、code
开源地址https://modelscope.cn/models/AI-ModelScope/incoder-1B
授权协议cc-by-nc-4.0

作品详情

InCoder 1B

A 1B parameter decoder-only Transformer model trained on code using a causal-masked objective, which allows inserting/infilling code as well as standard left-to-right generation.

The model was trained on public open-source repositories with a permissive, non-copyleft, license (Apache 2.0, MIT, BSD-2 or BSD-3) from GitHub and GitLab, as well as StackOverflow. Repositories primarily contained Python and JavaScript, but also include code from 28 languages, as well as StackOverflow.

For more information, see our:

A larger, 6B, parameter model is also available at facebook/incoder-6B.

Requirements

pytorch, tokenizers, and transformers. Our model requires HF's tokenizers >= 0.12.1, due to changes in the pretokenizer.

pip install torch
pip install "tokenizers>=0.12.1"
pip install transformers

Usage

See https://github.com/dpfried/incoder for example code.

Model

model = AutoModelForCausalLM.from_pretrained("facebook/incoder-1B")

Tokenizer

tokenizer = AutoTokenizer.from_pretrained("facebook/incoder-1B")

(Note: the incoder-1B and incoder-6B tokenizers are identical, so 'facebook/incoder-6B' could also be used.)

When calling tokenizer.decode, it's important to pass clean_up_tokenization_spaces=False to avoid removing spaces after punctuation. For example:

tokenizer.decode(tokenizer.encode("from ."), clean_up_tokenization_spaces=False)

(Note: encoding prepends the <|endoftext|> token, as this marks the start of a document to our model. This token can be removed from the decoded output by passing skip_special_tokens=True to tokenizer.decode.)

License

CC-BY-NC 4.0

Credits

The model was developed by Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer and Mike Lewis.

Thanks to Lucile Saulnier, Leandro von Werra, Nicolas Patry, Suraj Patil, Omar Sanseviero, and others at HuggingFace for help with the model release, and to Naman Goyal and Stephen Roller for the code our demo was based on!

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论