模型介绍
快速开始
Pipeline
from modelscope.pipelines import pipeline
model = 'damo/zero-shot-classify-SSTuning-XLM-R'
pipe = pipeline('zero-shot-classify-sstuning', model=model, model_revision='v1.0')
text = "I love this place! The food is always so fresh and delicious."
list_label = ["negative", "positive"]
output = pipe(text,list_label = list_label)
print(output)
# {'prediction': 'positive.', 'probability': '99.84%'}
python
from modelscope import AutoTokenizer, AutoModelForSequenceClassification, snapshot_download
import torch, string, random
model_dir = snapshot_download("damo/zero-shot-classify-SSTuning-XLM-R", revision='v1.0')
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
text = "I love this place! The food is always so fresh and delicious."
list_label = ["negative", "positive"] #The number of labels should be 2 ~ 20.
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
list_ABC = [x for x in string.ascii_uppercase]
def check_text(model, text, list_label, shuffle=False):
list_label = [x+'.' if x[-1] != '.' else x for x in list_label]
list_label_new = list_label + [tokenizer.pad_token]* (20 - len(list_label))
if shuffle:
random.shuffle(list_label_new)
s_option = ' '.join(['('+list_ABC[i]+') '+list_label_new[i] for i in range(len(list_label_new))])
text = f'{s_option} {tokenizer.sep_token} {text}'
model.to(device).eval()
encoding = tokenizer([text],truncation=True, max_length=512,return_tensors='pt')
item = {key: val.to(device) for key, val in encoding.items()}
logits = model(**item).logits
logits = logits if shuffle else logits[:,0:len(list_label)]
probs = torch.nn.functional.softmax(logits, dim = -1).tolist()
predictions = torch.argmax(logits, dim=-1).item()
probabilities = [round(x,5) for x in probs[0]]
print(f'prediction: {predictions} => ({list_ABC[predictions]}) {list_label_new[predictions]}')
print(f'probability: {round(probabilities[predictions]*100,2)}%')
check_text(model, text, list_label)
# prediction: 1 => (B) positive.
# probability: 99.84%
相关论文以及引用信息
@inproceedings{acl23/SSTuning,
author = {Chaoqun Liu and
Wenxuan Zhang and
Guizhen Chen and
Xiaobao Wu and
Anh Tuan Luu and
Chip Hong Chang and
Lidong Bing},
title = {Zero-Shot Text Classification via Self-Supervised Tuning},
booktitle = {Findings of the Association for Computational Linguistics: ACL 2023},
year = {2023},
url = {https://arxiv.org/abs/2305.11442},
}
评论