FreeU: Free Lunch in Diffusion U-Net
模型描述
FreeU,一种免费大幅提高扩散模型样本质量的方法:无需训练,无需引入额外参数,也无需增加内存或采样时间。
FreeU, a method that substantially improves diffusion model sample quality at no costs: no training, no additional parameter introduced, and no increase in memory or sampling time.
期望模型使用方式以及使用范围
如何使用
代码范例
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
prompt = "a photo of a running corgi" # prompt
output_image_path = './result.png'
input = {'prompt': prompt}
base_model = 'AI-ModelScope/stable-diffusion-v1-5' # SD1.5
freeu_params = {'b1': 1.5, 'b2': 1.6, 's1': 0.9, 's2': 0.2}
# base_model = 'AI-ModelScope/stable-diffusion-v2-1' # SD2.1
# freeu_params = {'b1': 1.4, 'b2': 1.6, 's1': 0.9, 's2': 0.2}
# base_model = 'AI-ModelScope/stable-diffusion-xl-base-1.0' # SDXL
# freeu_params = {'b1': 1.3, 'b2': 1.4, 's1': 0.9, 's2': 0.2}
pipe = pipeline(
Tasks.text_to_image_synthesis,
model='damo/multi-modal_freeu_stable_diffusion',
base_model=base_model,
freeu_params=freeu_params)
output = pipe(input)['output_img']
cv2.imwrite(output_image_path, output)
print('pipeline: the output image path is {}'.format(output_image_path))
相关论文以及引用信息
@article{si2023freeu,
title={FreeU: Free Lunch in Diffusion U-Net},
author={Si, Chenyang and Huang, Ziqi and Jiang, Yuming and Liu, Ziwei},
journal={arXiv preprint arXiv:2309.11497},
year={2023}
}
Clone with HTTP
git clone https://www.modelscope.cn/damo/multi-modal_freeu_stable_diffusion.git
评论