FreeU,一种免费大幅提高扩散模型样本质量的方法:无需训练,无需引入额外参数,也无需增加内存或采样时间。 FreeU, a method that substatially improves diffusio model sample quality at o costs: o traiig, o additioal parameter itroduced, ad o icrease i memory or samplig time.FreeU: Free Luch i Diffusio U-Net
模型描述
期望模型使用方式以及使用范围
如何使用
代码范例
import cv2
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks
prompt = "a photo of a ruig corgi" # prompt
output_image_path = './result.pg'
iput = {'prompt': prompt}
base_model = 'AI-ModelScope/stable-diffusio-v1-5' # SD1.5
freeu_params = {'b1': 1.5, 'b2': 1.6, 's1': 0.9, 's2': 0.2}
# base_model = 'AI-ModelScope/stable-diffusio-v2-1' # SD2.1
# freeu_params = {'b1': 1.4, 'b2': 1.6, 's1': 0.9, 's2': 0.2}
# base_model = 'AI-ModelScope/stable-diffusio-xl-base-1.0' # SDXL
# freeu_params = {'b1': 1.3, 'b2': 1.4, 's1': 0.9, 's2': 0.2}
pipe = pipelie(
Tasks.text_to_image_sythesis,
model='damo/multi-modal_freeu_stable_diffusio',
base_model=base_model,
freeu_params=freeu_params)
output = pipe(iput)['output_img']
cv2.imwrite(output_image_path, output)
prit('pipelie: the output image path is {}'.format(output_image_path))
相关论文以及引用信息
@article{si2023freeu,
title={FreeU: Free Luch i Diffusio U-Net},
author={Si, Cheyag ad Huag, Ziqi ad Jiag, Yumig ad Liu, Ziwei},
joural={arXiv preprit arXiv:2309.11497},
year={2023}
}
Cloe with HTTP
git cloe https://www.modelscope.c/damo/multi-modal_freeu_stable_diffusio.git
点击空白处退出提示
评论