CodeFuse-QWen-14B

我要开发同款
匿名用户2024年07月31日
29阅读
开发技术qwen、Pytorch
所属分类ai
开源地址https://modelscope.cn/models/codefuse-ai/CodeFuse-QWen-14B
授权协议other

作品详情

Model Card for CodeFuse-QWen-14B

[中文] [English]

Clone with HTTP

 git clone https://www.modelscope.cn/codefuse-ai/CodeFuse-QWen-14B.git

Model Description

CodeFuse-QWen-14B is a 14B Code-LLM finetuned by QLoRA of multiple code tasks on the base model StarCoder.


News and Updates

?? 2023-10-20 CodeFuse-QWen-14B technical documentation has been released. For those interested, please refer to the CodeFuse article on our WeChat official account via the provided link.(https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw)

?? 2023-10-16 CodeFuse-QWen-14B has been released, achieving a pass@1 (greedy decoding) score of 48.78% on HumanEval, which is a 16% increase compared to Qwen-14b's 32.3%.

?? 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.

??? 2023-09-26 We are pleased to announce the release of the 4-bit quantized version of CodeFuse-CodeLlama-34B. Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.

??? 2023-09-11 CodeFuse-CodeLlama34B has achived 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.


Code Community

Homepage: ? https://github.com/codefuse-ai (Please give us your support with a Star? + Fork? + Watch?)

  • If you wish to fine-tune the model yourself, you can visit ✨MFTCoder✨✨

  • If you wish to deploy the model yourself, you can visit ✨FasterTransformer4CodeFuse✨✨

  • If you wish to see a demo of the model, you can visit ✨CodeFuse Demo✨✨


Performance

Model HumanEval(pass@1) Date
CodeFuse-CodeLlama-34B 74.4% 2023.9
CodeFuse-CodeLlama-34B-4bits 73.8% 2023.9
WizardCoder-Python-34B-V1.0 73.2% 2023.8
GPT-4(zero-shot) 67.0% 2023.3
PanGu-Coder2 15B 61.6% 2023.8
CodeLlama-34b-Python 53.7% 2023.8
CodeLlama-34b 48.8% 2023.8
GPT-3.5(zero-shot) 48.1% 2022.11
OctoCoder 46.2% 2023.8
StarCoder-15B 33.6% 2023.5
Qwen-14b 32.3% 2023.10
CodeFuse-StarCoder-15B 54.9% 2023.9
CodeFuse-QWen-14B 48.78% 2023.10

NLP


Requirements

  • python>=3.8
  • pytorch>=2.0.0
  • transformers==4.32.0
  • Sentencepiece
  • CUDA 11.4

Inference String Format

The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process. Here is an example format of the concatenated string:

"""
<s>system
System instruction
<s>human
Human 1st round input
<s>bot
Bot 1st round output<|endoftext|>
<s>human
Human 2nd round input
<s>bot
Bot 2nd round output<|endoftext|>
...
...
...
<s>human
Human nth round input
<s>bot
{Bot output to be genreated}<|endoftext|>
"""

When applying inference, you always make your input string end with "\<s>bot" to ask the model generating answers.

Quickstart

 git clone https://www.modelscope.cn/codefuse-ai/CodeFuse-QWen-14B.git
pip install -r requirements.txt
import torch
from modelscope import (
    AutoTokenizer, 
    AutoModelForCausalLM,
    snapshot_download
)
model_dir = snapshot_download('codefuse-ai/CodeFuse-QWen-14B',revision = 'v1.0.0')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.pad_token = "<|endoftext|>"
tokenizer.eos_token = "<|endoftext|>"
# try 4bit loading if cuda memory not enough
model = AutoModelForCausalLM.from_pretrained(model_dir,
                                             trust_remote_code=True,
                                             load_in_4bit=False,
                                             device_map="auto",
                                             torch_dtype=torch.bfloat16)
model.eval()

HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"

text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.\n{BOT_ROLE_START_TAG}" 
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
outputs = model.generate(
        inputs=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        max_new_tokens=512,
        top_p=0.95,
        temperature=0.1,
        do_sample=True,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id
    )
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(gen_text)

模型简介

CodeFuse-QWen-14B 是一个通过QLoRA对基座模型QWen-14B进行多代码任务微调的代码大模型。

新闻

?? 2023-10-20 公布了CodeFuse-QWen-14B技术文档,感兴趣详见微信公众号CodeFuse文章:https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw

?? 2023-10-16开源了CodeFuse-QWen-14B模型,在HumanEval pass@1(greedy decoding)上可以达到48.78%, 比Qwen-14b提高了16%的代码能力(HumanEval)

?? 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)

??? 2023-09-26 CodeFuse-CodeLlama-34B 4bits量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。

??? 2023-09-11 CodeFuse-CodeLlama-34B发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。


代码社区

大本营: ? https://github.com/codefuse-ai (请支持我们的项目Star? + Fork? + Watch?


评测表现

代码

模型 HumanEval(pass@1) 日期
CodeFuse-CodeLlama-34B 74.4% 2023.9
CodeFuse-CodeLlama-34B-4bits 73.8% 2023.9
WizardCoder-Python-34B-V1.0 73.2% 2023.8
GPT-4(zero-shot) 67.0% 2023.3
PanGu-Coder2 15B 61.6% 2023.8
CodeLlama-34b-Python 53.7% 2023.8
CodeLlama-34b 48.8% 2023.8
GPT-3.5(zero-shot) 48.1% 2022.11
OctoCoder 46.2% 2023.8
StarCoder-15B 33.6% 2023.5
Qwen-14b 32.3% 2023.10
CodeFuse-StarCoder-15B 54.9% 2023.9
CodeFuse-QWen-14B 48.78% 2023.8

NLP


Requirements

  • python>=3.8
  • pytorch>=2.0.0
  • transformers==4.32.0
  • Sentencepiece
  • CUDA 11.4

推理数据格式

推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式:

"""
<s>system
这是System指令
<s>human
这是第1轮用户输入的问题
<s>bot
这是第1轮模型生成的内容<|endoftext|>
<s>human
这是第2轮用户输入的问题
<s>bot
这是第2轮模型生成的内容<|endoftext|>
...
...
...
<s>human
这是第n轮用户输入的问题
<s>bot
{模型现在要生成的内容}<|endoftext|>
"""

推理时,请确保拼接的prompt字符串以"\<s>bot\n"结尾,引导模型生成回答。

快速使用

 git clone https://www.modelscope.cn/codefuse-ai/CodeFuse-QWen-14B.git
pip install -r requirements.txt
import torch
from modelscope import (
    AutoTokenizer, 
    AutoModelForCausalLM,
    snapshot_download
)
model_dir = snapshot_download('codefuse-ai/CodeFuse-QWen-14B',revision = 'v1.0.0')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.pad_token = "<|endoftext|>"
tokenizer.eos_token = "<|endoftext|>"
# try 4bit loading if cuda memory not enough
model = AutoModelForCausalLM.from_pretrained(model_dir,
                                             trust_remote_code=True,
                                             load_in_4bit=False,
                                             device_map="auto",
                                             torch_dtype=torch.bfloat16)
model.eval()

HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"

text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.\n{BOT_ROLE_START_TAG}" 
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
outputs = model.generate(
        inputs=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        max_new_tokens=512,
        top_p=0.95,
        temperature=0.1,
        do_sample=True,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id
    )

gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(gen_text)

加入我们

我们是平台技术事业群AI Native团队,负责蚂蚁蚂蚁集团平台工程的智能化,团队成立3年多以来,支持了蚂蚁集团云计算基础设施智能化运维的升级改造。团队的Mission是,通过世界级的技术创新和影响,构建有广泛用户的算法服务和平台,支撑内外部产品和业务落地。团队秉承创新基因,在支撑业务落地的同时,推动技术影响。3年以来在ICLR、NeurIPS、KDD、ACL等顶会发表论文20余篇,创新业务结果获得两次蚂蚁技术最高奖T-Star,1次蚂蚁集团最高奖SuperMA。开源项目CodeFuse获得4K点赞(2024年2月),Huggingface和modelscope上模型累积下载量超过150万次。

我们正在寻找行业中的佼佼者加入我们的团队!如果您希望在一个充满活力、创新和卓越文化的环境中发展您的职业生涯,欢迎您查看我们的社招&校招机会,加入我们,一起创造下一个行业里程碑。

校招:https://hrrecommend.antgroup.com/guide.html?code=8uoP5mlus5DqQYbEEnqcE2FD5JZH21MwvMUIb9mb6X3osXPuBraG54SyM8GLn7

社招:https://talent.antgroup.com/off-campus-position?positionId=1933830

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论