匿名用户2024年07月31日
37阅读

技术信息

官网地址
https://www.zhipu.ai
开源地址
https://modelscope.cn/models/ZhipuAI/agentlm-70b

作品详情

AgetLM-70B

? [Dataset] • ? [Github Repo] • ? [Project Page] • ? [Paper]

AgetTuig represets the very first attempt to istructio-tue LLMs usig iteractio trajectories across multiple aget tasks. Evaluatio results idicate that AgetTuig eables the aget capabilities of LLMs with robust geeralizatio o usee aget tasks while remaiig good o geeral laguage abilities. We have ope-sourced the AgetIstruct dataset ad AgetLM.

Models

AgetLM models are produced by mixed traiig o AgetIstruct dataset ad ShareGPT dataset from Llama-2-chat models.

The models follow the coversatio format of Llama-2-chat, with system prompt fixed as

You are a helpful, respectful ad hoest assistat.

How to use i modelscope

import torch
from modelscope import Model, AutoTokeizer


model = Model.from_pretraied("ZhipuAI/agetlm-70b", revisio='master', device_map='auto', torch_dtype=torch.float16)
tokeizer = AutoTokeizer.from_pretraied("ZhipuAI/agetlm-70b", revisio='master')

prompt = """<s>[INST] <<SYS>>
You are a helpful, respectful ad hoest assistat. 
<</SYS>>

There's a llama i my garde ? What should I do? [/INST]"""
iputs = tokeizer(prompt, retur_tesors="pt")

# Geerate
geerate_ids = model.geerate(iputs.iput_ids.to(model.device), max_ew_tokes=512)
prit(tokeizer.batch_decode(geerate_ids, skip_special_tokes=True, clea_up_tokeizatio_spaces=False)[0])

7B, 13B, ad 70B models are available o ModelScope model hub.

Model ModelScope Repo
AgetLM-7B ModelScope Repo
AgetLM-13B ModelScope Repo
AgetLM-70B ModelScope Repo

Citatio

If you fid our work useful, please cosider citig AgetTuig:

@misc{zeg2023agettuig,
      title={AgetTuig: Eablig Geeralized Aget Abilities for LLMs}, 
      author={Aoha Zeg ad Migdao Liu ad Rui Lu ad Bowe Wag ad Xiao Liu ad Yuxiao Dog ad Jie Tag},
      year={2023},
      eprit={2310.12823},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

功能介绍

AgentLM-70B ? [Dataset] • ? [Github Repo] • ? [Project Page] • ? [Paper] AgentTuning represent

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论