GTE文本向量-中文-通用领域-large

我要开发同款
匿名用户2024年07月31日
282阅读
开发技术bert、pytorch
所属分类ai、文本相似度、文本相关性、GTE、Transformer、passage retrieval、text retrieval、text representation
开源地址https://modelscope.cn/models/iic/nlp_gte_sentence-embedding_chinese-large
授权协议Apache License 2.0

作品详情

GTE中文通用文本表示模型(large)

文本表示是自然语言处理(NLP)领域的核心问题, 其在很多NLP、信息检索的下游任务中发挥着非常重要的作用。近几年, 随着深度学习的发展,尤其是预训练语言模型的出现极大的推动了文本表示技术的效果, 基于预训练语言模型的文本表示模型在学术研究数据、工业实际应用中都明显优于传统的基于统计模型或者浅层神经网络的文本表示模型。这里, 我们主要关注基于预训练语言模型的文本表示。

文本表示示例, 输入一个句子, 输入一个固定维度的连续向量:

  • 输入: 吃完海鲜可以喝牛奶吗?
  • 输出: [0.27162,-0.66159,0.33031,0.24121,0.46122,…]

文本的向量表示通常可以用于文本聚类、文本相似度计算、文本向量召回等下游任务中。

文本表示模型

基于监督数据训练的文本表示模型通常采用Dual Encoder框架, 如下图所示。在Dual Encoder框架中, Query和Document文本通过预训练语言模型编码后, 通常采用预训练语言模型[CLS]位置的向量作为最终的文本向量表示。基于标注数据的标签, 通过计算query-document之间的cosine距离度量两者之间的相关性。

GTE-zh模型使用retromae初始化训练模型,之后利用两阶段训练方法训练模型:第一阶段利用大规模弱弱监督文本对数据训练模型,第二阶段利用高质量精标文本对数据以及挖掘的难负样本数据训练模型。具体训练方法请参考论文Towards General Text Embeddings with Multi-stage Contrastive Learning

使用方式和范围

使用方式:

  • 直接推理, 对给定文本计算其对应的文本向量表示,向量维度1024

使用范围:

  • 本模型可以使用在通用领域的文本向量表示及其下游应用场景, 包括双句文本相似度计算、query&多doc候选的相似度排序

如何使用

在ModelScope框架上,提供输入文本(默认最长文本长度为128),即可以通过简单的Pipeline调用来使用GTE文本向量表示模型。ModelScope封装了统一的接口对外提供单句向量表示、双句文本相似度、多候选相似度计算功能

代码示例

from modelscope.models import Model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

model_id = "iic/nlp_gte_sentence-embedding_chinese-large"
pipeline_se = pipeline(Tasks.sentence_embedding,
                       model=model_id,
                       sequence_length=512
                       ) # sequence_length 代表最大文本长度,默认值为128
# 当输入包含“soure_sentence”与“sentences_to_compare”时,会输出source_sentence中首个句子与sentences_to_compare中每个句子的向量表示,以及source_sentence中首个句子与sentences_to_compare中每个句子的相似度。
inputs = {
        "source_sentence": ["吃完海鲜可以喝牛奶吗?"],
        "sentences_to_compare": [
            "不可以,早晨喝牛奶不科学",
            "吃了海鲜后是不能再喝牛奶的,因为牛奶中含得有维生素C,如果海鲜喝牛奶一起服用会对人体造成一定的伤害",
            "吃海鲜是不能同时喝牛奶吃水果,这个至少间隔6小时以上才可以。",
            "吃海鲜是不可以吃柠檬的因为其中的维生素C会和海鲜中的矿物质形成砷"
        ]
    }

result = pipeline_se(input=inputs)
print (result)

# 当输入仅含有soure_sentence时,会输出source_sentence中每个句子的向量表示以及首个句子与其他句子的相似度。
inputs2 = {
        "source_sentence": [
            "不可以,早晨喝牛奶不科学",
            "吃了海鲜后是不能再喝牛奶的,因为牛奶中含得有维生素C,如果海鲜喝牛奶一起服用会对人体造成一定的伤害",
            "吃海鲜是不能同时喝牛奶吃水果,这个至少间隔6小时以上才可以。",
            "吃海鲜是不可以吃柠檬的因为其中的维生素C会和海鲜中的矿物质形成砷"
        ]
}
result = pipeline_se(input=inputs2)
print (result)

默认向量维度1024, scores中的score计算两个向量之间的内积距离得到

模型局限性以及可能的偏差

本模型基于中文通用领域数据上训练,在垂类领域效果无法保证,请用户自行评测后决定如何使用

训练示例代码

# 需在GPU环境运行
# 加载数据集过程可能由于网络原因失败,请尝试重新运行代码
from modelscope.metainfo import Trainers                                                                                                                                                              
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
import tempfile
import os

tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(tmp_dir):
    os.makedirs(tmp_dir)

# load dataset
ds = MsDataset.load('dureader-retrieval-ranking', 'zyznull')
train_ds = ds['train'].to_hf_dataset()
dev_ds = ds['dev'].to_hf_dataset()
model_id = 'iic/nlp_gte_sentence-embedding_chinese-large'
def cfg_modify_fn(cfg):
    cfg.task = 'sentence-embedding'
    cfg['preprocessor'] = {'type': 'sentence-embedding','max_length': 256}
    cfg['dataset'] = {
        'train': {
            'type': 'bert',
            'query_sequence': 'query',
            'pos_sequence': 'positive_passages',
            'neg_sequence': 'negative_passages',
            'text_fileds': ['text'],
            'qid_field': 'query_id'
        },
        'val': {
            'type': 'bert',
            'query_sequence': 'query',
            'pos_sequence': 'positive_passages',
            'neg_sequence': 'negative_passages',
            'text_fileds': ['text'],
            'qid_field': 'query_id'
        },
    }
    cfg['train']['neg_samples'] = 4
    cfg['evaluation']['dataloader']['batch_size_per_gpu'] = 30
    cfg.train.max_epochs = 1
    cfg.train.train_batch_size = 4
    return cfg 
kwargs = dict(
    model=model_id,
    train_dataset=train_ds,
    work_dir=tmp_dir,
    eval_dataset=dev_ds,
    cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(name=Trainers.nlp_sentence_embedding_trainer, default_args=kwargs)
trainer.train()

模型效果评估

中文多任务向量评测榜单C-MTEB结果如下:

Model Model Size (GB) Embedding Dimensions Sequence Length Average (35 datasets) Classification (9 datasets) Clustering (4 datasets) Pair Classification (2 datasets) Reranking (4 datasets) Retrieval (8 datasets) STS (8 datasets)
gte-large-zh 1.34 1024 512 66.14 69.98 53.13 81.14 67.42 71.93 58.09
gte-base-zh 0.21 768 512 65.17 69.62 50.73 80.12 66.57 71.11 56.99
stella-large-zh-v2 0.65 1024 1024 65.13 69.05 49.16 82.68 66.41 70.14 58.66
stella-large-zh 0.65 1024 1024 64.54 67.62 48.65 78.72 65.98 71.02 58.3
bge-large-zh-v1.5 1.3 1024 512 64.53 69.13 48.99 81.6 65.84 70.46 56.25
stella-base-zh-v2 0.21 768 1024 64.36 68.29 49.4 79.96 66.1 70.08 56.92
stella-base-zh 0.21 768 1024 64.16 67.77 48.7 76.09 66.95 71.07 56.54
piccolo-large-zh 0.65 1024 512 64.11 67.03 47.04 78.38 65.98 70.93 58.02
piccolo-base-zh 0.2 768 512 63.66 66.98 47.12 76.61 66.68 71.2 55.9
gte-small-zh 0.1 512 512 60.04 64.35 48.95 69.99 66.21 65.50 49.72
bge-small-zh-v1.5 0.1 512 512 57.82 63.96 44.18 70.4 60.92 61.77 49.1

引用

@misc{li2023general,
      title={Towards General Text Embeddings with Multi-stage Contrastive Learning}, 
      author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
      year={2023},
      eprint={2308.03281},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论