The text embedding set trained by Jina AI, Finetuner team.
Intended Usage & Model Info
jina-embeddings-v2-small-en
is an English, monolingual embedding model supporting 8192 sequence length.
It is based on a Bert architecture (JinaBert) that supports the symmetric bidirectional variant of ALiBi to allow longer sequence length.
The backbone jina-bert-v2-small-en
is pretrained on the C4 dataset.
The model is further trained on Jina AI's collection of more than 400 millions of sentence pairs and hard negatives.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi. This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search, etc.
This model has 33 million parameters, which enables lightning-fast and memory efficient inference, while still delivering impressive performance. Additionally, we provide the following embedding models:
V1 (Based on T5, 512 Seq)
jina-embeddings-v1-small-en
: 35 million parameters.jina-embeddings-v1-base-en
: 110 million parameters.jina-embeddings-v1-large-en
: 330 million parameters.
V2 (Based on JinaBert, 8k Seq)
jina-embeddings-v2-small-en
: 33 million parameters (you are here).jina-embeddings-v2-base-en
: 137 million parameters.- [
jina-embeddings-v2-large-en
](): 435 million parameters (releasing soon).
Data & Parameters
Jina Embeddings V2 technical report coming soon.
Jina Embeddings V1 technical report.
Usage
You can use Jina Embedding models directly from transformers package:
!pip install transformers
from transformers import AutoModel
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-small-en', trust_remote_code=True) # trust_remote_code is needed to use the encode method
embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?'])
print(cos_sim(embeddings[0], embeddings[1]))
If you only want to handle shorter sequence, such as 2k, pass the max_length
parameter to the encode
function:
embeddings = model.encode(
['Very long ... document'],
max_length=2048
)
Alternatively, you can use Jina AI's Embeddings platform for fully-managed access to Jina Embeddings models (Coming soon!).
Fine-tuning
Please consider Finetuner.
Plans
The development of new bilingual models is currently underway. We will be targeting mainly the German and Spanish languages.
The upcoming models will be called jina-embeddings-v2-small-de/es
.
Contact
Join our Discord community and chat with other community members about ideas.
Citation
If you find Jina Embeddings useful in your research, please cite the following paper:
Coming soon.
评论