See the codes ad scripts below. Note: The results may cotai radomess as Comig soo. Comig soo. All weights are coverted ito Huggigface format ad totally compatible with the base repositories (LLaVA, mPLUG-Owl, IterLM-XComposer). After istallig the base repositories, you ca chage the HF-path i the origial evaluatio scripts ito the followig oes, so as to automatically dowload the Q-Istruct-tued versios. Released: Comig Soo: At preset, we oly provide the traiig scripts with LLaVA-v1.5. Please see Traiig Docs for more details. Researchers ad ope-source developers are Q-Istruct: Improvig Low-level Visual Abilities for Multi-modality Foudatio Models
Quick Start
LLaVA-v1.5
Istall LLaVA.
git cloe https://github.com/haotia-liu/LLaVA.git
cd LLaVA
pip istall -e .
Simple Iteractive Demos.
Example Code (Sigle Query)
from llava.mm_utils import get_model_ame_from_path
from llava.eval.ru_llava import eval_model
model_path = "teowu/llava_v1.5_7b_qistruct_preview_v0.1"
prompt = "Rate the quality of the image. Thik step by step."
image_file = "fig/sausage.jpg"
args = type('Args', (), {
"model_path": model_path,
"model_base": Noe,
"model_ame": get_model_ame_from_path(model_path),
"query": prompt,
"cov_mode": Noe,
"image_file": image_file,
"sep": ",",
})()
eval_model(args)
Example Code (CLI Demo for Multi-tur Coversatio)
pytho -m llava.serve.cli \
--model-path teowu/llava_v1.5_7b_qistruct_preview_v0.1 \
--image-file "fig/sausage.jpg" \
do_sample=True
is eabled durig coversatio mode. Quatitative Evaluatios
Multi-choice questio (MCQ) i Q-Bech.
pytho eval_scripts/llava_v1.5/eval_qbech_mcq.py
Image/Video Quality Assessmet
pytho eval_scripts/llava_v1.5/eval_image_quality.py
pytho eval_scripts/llava_v1.5/eval_video_quality.py
mPLUG-Owl-2
IterLM-XComposer-VL
Model Zoo
teowu/llava_v1.5_7b_qistruct_preview_v0.1
teowu/llava_v1.5_13b_qistruct_preview_v0.1
Traiig
Licese
haoig001@e.tu.edu.sg
to gai the permissio for commercial use.
点击空白处退出提示
评论