Latet Cosistecy Model (LCM) LoRA was proposed i LCM-LoRA: A uiversal Stable-Diffusio Acceleratio Module 
by Simia Luo, Yiqi Ta, Suraj Patil, Daiel Gu et al. It is a distilled cosistecy adapter for  LCM-LoRA is supported i ? Huggig Face Diffusers library from versio v0.23.0 owards. To ru the model, first 
istall the latest versio of the Diffusers library as well as  The adapter ca be loaded with it's base model  Works as well! TODO docs Works as well! TODO docs Works as well! TODO docs Works as well! TODO docs TODO TODOLatet Cosistecy Model (LCM) LoRA: SDXL
stable-diffusio-xl-base-1.0 that allows
to reduce the umber of iferece steps to oly betwee 
 
Model 
Params / M 
 
lcm-lora-sdv1-5 
67.5 
 
lcm-lora-ssd-1b 
105 
 
Usage
peft, accelerate ad trasformers.
audio dataset from the Huggig Face Hub:pip istall --upgrade pip
pip istall --upgrade diffusers trasformers accelerate peft
Text-to-Image
stabilityai/stable-diffusio-xl-base-1.0. Next, the scheduler eeds to be chaged to LCMScheduler ad we ca reduce the umber of iferece steps to just 2 to 8 steps.
Please make sure to either disable guidace_scale or use values betwee 1.0 ad 2.0.import torch
from diffusers import LCMScheduler, AutoPipelieForText2Image
model_id = "stabilityai/stable-diffusio-xl-base-1.0"
adapter_id = "latet-cosistecy/lcm-lora-sdxl"
# pipe = AutoPipelieForText2Image.from_pretraied(model_id, torch_dtype=torch.float16, variat="fp16")
from modelscope.hub.sapshot_dowload import sapshot_dowload
model_dir = sapshot_dowload(model_id)
pipe = AutoPipelieForText2Image.from_pretraied(model_dir, torch_dtype=torch.float16, variat="fp16")
pipe.scheduler = LCMScheduler.from_cofig(pipe.scheduler.cofig)
pipe.to("cuda")
# load ad fuse lcm lora
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
prompt = "Self-portrait oil paitig, a beautiful cyborg with golde hair, 8k"
# disable guidace_scale by passig 0
image = pipe(prompt=prompt, um_iferece_steps=4, guidace_scale=0).images[0]
Image-to-Image
Ipaitig
CotrolNet
T2I Adapter
Speed Bechmark
Traiig
点击空白处退出提示












评论