MultiDiffusion
MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
MultiDiffusion是一个统一的生成框架,它通过一个最小二乘优化任务,将同一个扩散模型生成的多个crop约束在一起,虽然最初各个crop生成的内容可能会不一致,但MultiDiffusion会通过全局去噪,不断融合各个crop,从而产生高质量和连贯性的图像。
example
if __name__ == "__main__":
from modelscope.pipelines import pipeline
model = 'jianguo_wjg/multidiffusion'
pipe = pipeline('multidiffusion', model=model, model_revision="v0.1.6")
H = 512
W = 2048
prompt = "a photo of the dolomites"
image = pipe(prompt, height=H, width=W).images[0]
image.save("dolomites.jpg")
License
The model is licensed under the MIT license.
Citation
@article{bar2023multidiffusion,
title={MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation},
author={Bar-Tal, Omer and Yariv, Lior and Lipman, Yaron and Dekel, Tali},
journal={arXiv preprint arXiv:2302.08113},
year={2023}
}
Clone with HTTP
git clone https://www.modelscope.cn/jianguo_wjg/multidiffusion.git
评论