chinese-llama-2-7b

我要开发同款
匿名用户2024年07月31日
23阅读
所属分类ai、llama、pytorch
开源地址https://modelscope.cn/models/AI-ModelScope/chinese-llama-2-7b
授权协议apache-2.0

作品详情

Chinese-LLaMA-2-7B

This is the full Chinese-LLaMA-2-7B model,which can be loaded directly for inference and full-parameter training.

Related models?

示例代码

from modelscope import AutoModelForCausalLM, AutoTokenizer

model_id = "AI-ModelScope/chinese-llama-2-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')

text = "你好,我的名字是"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(inputs.input_ids.to(model.device), max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Description of Chinese-LLaMA-Alpaca-2

This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method.

The main contents of this project include:

  • ? New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs.
  • ? Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data
  • ? Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC
  • ? Support for LLaMA ecosystems like ?transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc.

Please refer to https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/ for details.

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论