controlnet-depth-sdxl-1.0

我要开发同款
匿名用户2024年07月31日
29阅读
所属分类aipytorch、controlnet、diffusers、text-to-image、stable-diffusion-xl-、stable-diffusion-xl
开源地址https://modelscope.cn/models/AI-ModelScope/controlnet-depth-sdxl-1.0
授权协议openrail++

作品详情

SDXL-controlnet: Depth

These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following.

prompt: spiderman lecture, photorealistic images_0)

Usage

Make sure to first install the libraries:

pip install accelerate transformers safetensors diffusers

And then we're ready to go:

import torch
import numpy as np
from PIL import Image

from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image


depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe.enable_model_cpu_offload()

def get_depth_map(image):
    image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
    with torch.no_grad(), torch.autocast("cuda"):
        depth_map = depth_estimator(image).predicted_depth

    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1),
        size=(1024, 1024),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)

    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image


prompt = "stormtrooper lecture, photorealistic"
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
controlnet_conditioning_scale = 0.5  # recommended for good generalization

depth_image = get_depth_map(image)

images = pipe(
    prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale,
).images
images[0]

images[0].save(f"stormtrooper.png")

For more details, check out the official documentation of StableDiffusionXLControlNetPipeline.

Training

Our training script was built on top of the official training script that we provide here.

Training data and Compute

The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.

Batch size

Data parallel with a single GPU batch size of 8 for a total batch size of 256.

Hyper Parameters

The constant learning rate of 1e-5.

Mixed precision

fp16

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论