通义千问1.5-MoE-A2.7B

我要开发同款
匿名用户2024年07月31日
34阅读
所属分类ai、qwen2_moe、pytorch、moe、pretrained
开源地址https://modelscope.cn/models/qwen/Qwen1.5-MoE-A2.7B
授权协议other

作品详情

Qwen1.5-MoE-A2.7B

Introduction

Qwen1.5-MoE is a transformer-based MoE decoder-only language model pretrained on a large amount of data.

For more details, please refer to our blog post and GitHub repo.

Model Details

Qwen1.5-MoE employs Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while achieving comparable performance to Qwen1.5-7B, it only requires 25% of the training resources. We also observed that the inference speed is 1.74 times that of Qwen1.5-7B.

Requirements

The code of Qwen1.5-MoE has been in the latest Hugging face transformers and we advise you to build from source with command pip install git+https://github.com/huggingface/transformers, or you might encounter the following error:

KeyError: 'qwen2_moe'.

Usage

We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论