Smaug-Mixtral-v0.1

我要开发同款
匿名用户2024年07月31日
26阅读
所属分类ai、mixtral、pytorch、finetune、mixtral
开源地址https://modelscope.cn/models/AI-ModelScope/Smaug-Mixtral-v0.1
授权协议apache-2.0

作品详情

Overview

This model is part of the Smaug series of finetuned models. This one based on https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

We use a new fine-tuning technique, DPO-Positive (DPOP), and new pairwise preference versions of ARC, HellaSwag, and MetaMath (as well as other existing datasets). We introduce the technique and the full training details in our new paper: https://arxiv.org/abs/2402.13228.

We show that on datasets in which the edit distance between pairs of completions is low (such as in math-based datasets), standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. Using these insights, we design DPOP, a new loss function and training procedure which avoids this failure mode. Surprisingly, we also find that DPOP outperforms DPO across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions.

We believe this new approach is generally useful in training across a wide range of model types and downstream use cases, and it powers all of our Smaug models. With the release of our paper and datasets, we are excited for the open source community to continue to build on and improve Smaug and spawn more dragons to dominate the LLM space!

Keep watching this space for our announcements!

Evaluation Results

Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
75.12 74.91 87.70 70.16 65.96 81.61 70.36
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论