该模型为使用ModelScope Trainer 微调的模型
- 基础模型:chatglm2-6b
- 任务类型:generation
- 任务名称:T0321
评估结果
revision | rouge-2 | rouge-l | bleu-4 | rouge-1 |
---|---|---|---|---|
v1.2 | 81.89300618485058 | 86.68395350938152 | 86.35472602501737 | 86.68395350938152 |
v1.1 | 81.08498314801946 | 86.03018453787352 | 85.68129384989577 | 86.03018453787352 |
v1.0 | 78.76769061848506 | 84.09581435024323 | 83.60066136205698 | 84.09581435024323 |
示例代码
此模型需要用Lora方式进行推理
from modelscope import Model, pipeline, read_config
from modelscope.metainfo import Models
from modelscope.swift import Swift
import torch
from modelscope.hub.snapshot_download import snapshot_download
import os.path as osp
from modelscope.swift.lora import LoRAConfig
from modelscope.utils.config import ConfigDict
from modelscope.hub.api import HubApi
YOUR_ACCESS_TOKEN = '请从ModelScope个人中心->访问令牌获取'
api = HubApi()
api.login(YOUR_ACCESS_TOKEN)
lora_config = LoRAConfig(
replace_modules=['attention.query_key_value'],
rank=32,
lora_alpha=32,
lora_dropout=0.05
)
model_dir = 'ZhipuAI/chatglm2-6b'
model_config = read_config(model_dir)
model_config['model'] = ConfigDict({'type': Models.chatglm2_6b})
model = Model.from_pretrained(model_dir, cfg_dict=model_config)
model = model.bfloat16()
Swift.prepare_model(model, lora_config)
# flex train 训练得到的模型'xxxxxxxxxx',snapshot_download不支持model_revision,所以用revision
work_dir = snapshot_download('xxxxxxxxxx',revision='xxx')
state_dict = torch.load(osp.join(work_dir, 'pytorch_model.bin'))
model.load_state_dict(state_dict)
pipe = pipeline('chat', model, pipeline_name='chatglm2_6b-text-generation')
result_zh = pipe({
'text':
'简述曼德拉效应',
'history': []
})
print(result_zh['response'])
评论