Mixtral-8x22B-v0.1

我要开发同款
匿名用户2024年07月31日
29阅读
所属分类ai、mixtral、pytorch、moe
开源地址https://modelscope.cn/models/AI-ModelScope/Mixtral-8x22B-v0.1
授权协议apache-2.0

作品详情

Mixtral-8x22B

[!TIP] MistralAI has uploaded weights to their organization at mistralai/Mixtral-8x22B-v0.1 and mistralai/Mixtral-8x22B-Instruct-v0.1 too.

[!TIP] Kudos to @v2ray for converting the checkpoints and uploading them in transformers compatible format. Go give them a follow!

Converted to HuggingFace Transformers format using the script here.

The Mixtral-8x22B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts.

Run the model

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistral-community/Mixtral-8x22B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id)

text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:

In half-precision

Note float16 precision only works on GPU devices

Click to expand

+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistral-community/Mixtral-8x22B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Lower precision using (8-bit & 4-bit) using bitsandbytes

Click to expand

+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistral-community/Mixtral-8x22B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Load the model with Flash Attention 2

Click to expand

+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistral-community/Mixtral-8x22B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Notice

Mixtral-8x22B-v0.1 is a pretrained base model and therefore does not have any moderation mechanisms.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.46
AI2 Reasoning Challenge (25-Shot) 70.48
HellaSwag (10-Shot) 88.73
MMLU (5-Shot) 77.81
TruthfulQA (0-shot) 51.08
Winogrande (5-shot) 84.53
GSM8k (5-shot) 74.15
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论