Mixtral-8x22B-v0.1-4bit

我要开发同款
匿名用户2024年07月31日
33阅读
所属分类ai、mixtral、Pytorch、moe
开源地址https://modelscope.cn/models/cjc1887415157/Mixtral-8x22B-v0.1-4bit
授权协议apache-2.0

作品详情

Model Card for Mixtral-8x22B

The Mixtral-8x22B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts.

Model details:

  • ? ~176B params, ~44B active during inference
  • ? 65K context window
  • ??‍♂️ 8 experts, 2 per token
  • ? 32K vocab size
  • ✂️ Similar tokenizer as 7B

Model quantized and added by Prince Canuma using the full-precision model here: v2ray/Mixtral-8x22B-v0.1.

Run the model in 4-bit precision

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistral-community/Mixtral-8x22B-v0.1-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id)

text = "Who is Einstein?"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Notice

Mixtral-8x22B-v0.1 is a pretrained base model and therefore does not have any moderation mechanisms.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall.

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论