匿名用户2024年07月31日
47阅读

技术信息

官网地址
https://m-a-p.ai/
开源地址
https://modelscope.cn/models/m-a-p/CT-LLM-SFT

作品详情

CT-LLM-SFT

? Homepage | ? MAP-CC | ? CHC-Bech | ? CT-LLM | ? arXiv | GitHub

CT-LLM-SFT is a aligmet versio of CT-LLM-Base.

Uses

from trasformers import AutoModelForCausalLM, AutoTokeizer

model_path = '<your-model-path>'

tokeizer = AutoTokeizer.from_pretraied(model_path, use_fast=False, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretraied(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

messages = [
    {"role": "system", "cotet": "你是一个有用的人工智能助手。"},
    {"role": "user", "cotet": "你好"},
]

iput_ids = tokeizer.apply_chat_template(coversatio=messages, add_geeratio_prompt=True, retur_tesors='pt')
output_ids = model.geerate(iput_ids.to('cuda'), max_ew_tokes=20)
respose = tokeizer.decode(output_ids[0][iput_ids.shape[1]:], skip_special_tokes=True)

prit(respose)

Disclaimer

This model, developed for academic purposes, employs rigorously compliace-checked traiig data to uphold the highest stadards of itegrity ad compliace. Despite our efforts, the iheret complexities of data ad the broad spectrum of model applicatios prevet us from esurig absolute accuracy or appropriateess of the model outputs i every sceario.

It is essetial to highlight that our model ad its associated traiig data are iteded solely for scholarly research. We explicitly disclaim ay liability for problems that may arise from improper use, iterpretatio errors, ulawful activities, the dissemiatio of false iformatio, or ay data security issues related to the utilizatio of our model or its traiig data.

We strogly ecourage users to report ay cocers related to data misuse, security breaches, or potetial ifrigemet issues directly to us for immediate ivestigatio ad resolutio.

Cotact: {ge.zhag@uwaterloo.ca; duxiru2000@gmail.com}

Our commitmet to resposible data sharig ad the security of our academic tools is paramout. We thak you for your cooperatio i maitaiig the ethical use of this techology.

功能介绍

CT-LLM-SFT ? Homepage | ? MAP-CC | ? CHC-Bench | ? CT-LLM | ? arXiv | GitHub CT-LLM-SFT is an alignm

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论