Llama-3-8B-Agent
This Adapter is fine-tune from meta-llama/Meta-Llama-3-8B-Instruct using LLaMA-Factory
Environment
LLaMA-Factory Commit Version: db7f3b9784d21ef5c18a11679ad995bb97d61f7c
GPU RTX-4090 24G 单卡
Python 310
Training hyperparameters
Please ensure FA2 installed
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path /data/models/Meta-Llama-3-8B-Instruct \
--dataset alpaca_gpt4_zh,glaive_toolcall \
--dataset_dir data \
--template llama3 \
--finetuning_type lora \
--lora_target all \
--output_dir saves/LLaMA3-8B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 8192 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 1000 \
--eval_steps 1000 \
--max_samples 6000 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-6 \
--num_train_epochs 3.0 \
--val_size 0.1 \
--plot_loss \
--fp16 \
--flash_attn
评论