CodeQwen1_5-7B-OpenDevin

我要开发同款
匿名用户2024年07月31日
35阅读
所属分类ai、qwen2、pytorch
开源地址https://modelscope.cn/models/OpenDevin/CodeQwen1_5-7B-OpenDevin
授权协议Apache License 2.0

作品详情

CodeQwen1.5-7B-OpenDevin

Introduction

CodeQwen1.5-7B-OpenDevin is a code-specific model targeting on OpenDevin Agent tasks. The model is finetuned from CodeQwen1.5-7B, the code-specific large language model based on Qwen1.5 pretrained on large-scale code data. CodeQwen1.5-7B is strongly capable of understanding and generating codes, and it supports the context length of 65,536 tokens (for more information about CodeQwen1.5, please refer to the blog post and GitHub repo). The finetuned model, CodeQwen1.5-7B-OpenDevin, shares similar features, while it is designed for rapid development, debugging, and iteration.

Performance

We evaluate CodeQwen1.5-7B-OpenDevin on SWE-Bench-Lite by implementing the model on OpenDevin CodeAct 1.3 and follow the OpenDevin evaluation pipeline. CodeQwen1.5-7B-OpenDevin successfully solves 4 problems by commmiting pull requests targeting on the issues.

Requirements

The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install transformers>=4.37.0, or you might encounter the following error:

KeyError: 'qwen2'.

Quickstart

To use local models to run OpenDevin, we advise you to deploy CodeQwen1.5-7B-OpenDevin on a GPU device and access it through OpenAI API

python -m vllm.entrypoints.openai.api_server --model OpenDevin/CodeQwen1.5-7B-OpenDevin --dtype auto --api-key token-abc123

For more details, please refer to the official documentation of vLLM for OpenAI Compatible server.

After the deployment, following the guidance of OpenDevin and run the following command to set up environment variables:

# The directory you want OpenDevin to work with. MUST be an absolute path!
export WORKSPACE_BASE=$(pwd)/workspace;
export LLM_API_KEY=token-abc123;
export LLM_MODEL=OpenDevin/CodeQwen1.5-7B-OpenDevin;
export LLM_BASE_URL=http://localhost:8000/v1;

and run the docker command:

docker run \
    -it \
    --pull=always \
    -e SANDBOX_USER_ID=$(id -u) \
    -e LLM_BASE_URL=$LLM_BASE_URL \
    -e LLM_API_KEY=$LLM_API_KEY \
    -e LLM_MODEL=$LLM_MODEL \
    -e WORKSPACE_MOUNT_PATH=$WORKSPACE_BASE \
    -v $WORKSPACE_BASE:/opt/workspace_base \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -p 3000:3000 \
    --add-host host.docker.internal:host-gateway \
    ghcr.io/opendevin/opendevin:0.5

Now you should be able to connect http://localhost:3000/. Set up the configuration at the frontend by clicking the button at the bottom right, and input the right model name and api key. Then, you can enjoy playing with OpenDevin based on CodeQwen1.5-7B-OpenDevin!

Note

This is just a finetuning experiment, and we admit that the performance of the model is still lagging far behind GPT-4. In the future, we will update our datasets for agent-specific finetuning and provide better and larger models. Stay tuned!

Citation

@misc{codeqwen1.5,
    title = {Code with CodeQwen1.5},
    url = {https://qwenlm.github.io/blog/codeqwen1.5/},
    author = {Qwen Team},
    month = {April},
    year = {2024}
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论