Fine-tuning the llama3-8b-instruct model using the msagent-pro dataset and the loss_scale technique with swift, the script is as follows:
NPROC_PER_NODE=8 \
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
MASTER_PORT=29500 \
swift sft \
--model_type llama3-8b-instruct \
--learning_rate 2e-5 \
--sft_type lora \
--dataset msagent-pro \
--gradient_checkpointing true \
--gradient_accumulation_steps 8 \
--deepspeed default-zero3 \
--lora_target_modules ALL \
--use_loss_scale true \
--save_strategy epoch \
--batch_size 1 \
--num_train_epochs 2 \
--max_length 4096 \
--preprocess_num_proc 4 \
--use_loss_scale true \
--loss_scale_config_path agent-flan \
--ddp_backend nccl \
Comparison with the Original Model on the ToolBench Evaluation Set
Model | ToolBench (in-domain) | ToolBench (out-of-domain) | |||||||
---|---|---|---|---|---|---|---|---|---|
Plan.EM | Act.EM | HalluRate (lower is better) | Avg.F1 | R-L | Plan.EM | Act.EM | HalluRate (lower is better) | Avg.F1 | |
llama3-8b-instruct | 74.22 | 36.17 | 15.68 | 20.0 | 12.14 | 69.47 | 34.21 | 14.72 | 20.25 |
llama3-8b-agent-instruct-v2 | 85.15 | 58.1 | 1.57 | 52.10 | 26.02 | 85.79 | 59.43 | 2.56 | 52.19 |
For detailed explanations of the evaluation metrics, please refer to document
您可以通过如下git clone命令,或者ModelScope SDK来下载模型
SDK下载
#安装ModelScope
pip install modelscope
#SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('swift/llama3-8b-agent-instruct-v2')
Git下载
#Git模型下载
git clone https://www.modelscope.cn/swift/llama3-8b-agent-instruct-v2.git
如果您是本模型的贡献者,我们邀请您根据模型贡献文档,及时完善模型卡片内容。
评论