二胡演奏技法识别模型

我要开发同款
匿名用户2024年07月31日
19阅读
开发技术Pytorch
所属分类ai
开源地址https://modelscope.cn/models/ccmusic-database/erhu_playing_tech
授权协议MIT License

作品详情

二胡演奏技法识别模型是一种基于深度学习技术的音频分析工具,旨在自动区分二胡演奏中的不同技法。该模型通过深入分析二胡音乐的声学特征,能够识别出包括分弓、垫弓、泛音、连弓、滑音、大滑音、击弓、拨弦、抛弓、顿弓、颤弓、颤音以及揉弦在内的11种基本演奏技法。通过对音频信号进行时频域转换、特征提取和模式识别,该模型能够准确地对二胡演奏中的复杂技法进行分类,为音乐信息检索、音乐教育以及二胡演奏艺术的研究提供了一种高效的技术支持。此模型的应用不仅丰富了音乐声学领域的研究,也为传统音乐的传承与创新开辟了新的途径。

The Erhu Performance Technique Recognition Model is an audio analysis tool based on deep learning techniques, aiming to automatically distinguish different techniques in erhu performance. By deeply analyzing the acoustic characteristics of erhu music, the model is able to recognize 11 basic playing techniques, including split bow, pad bow, overtone, continuous bow, glissando, big glissando, strike bow, pizzicato, throw bow, staccato bow, vibrato, tremolo and vibrato. Through time-frequency conversion, feature extraction and pattern recognition, the model can accurately categorize the complex techniques of erhu performance, which provides an efficient technical support for music information retrieval, music education, and research on the art of erhu performance. The application of this model not only enriches the research in the field of music acoustics, but also opens up a new way for the inheritance and innovation of traditional music.

在线演示(Demo)

https://www.modelscope.cn/studios/ccmusic-database/erhu-playing-tech

使用(Usage)

from modelscope import snapshot_download
model_dir = snapshot_download('ccmusic-database/erhu_playing_tech')

维护(Maintenance)

GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/ccmusic-database/erhu_playing_tech.git
cd erhu_playing_tech

训练结果(Results)

一个 SqueezeNet 网络的微调结果(Fine-tuning results for a SqueezeNet network):

Loss curve
Training and validation accuracy
Confusion matrix

数据集(Dataset)

https://www.modelscope.cn/datasets/ccmusic-database/erhu_playing_tech

镜像(Mirror)

https://huggingface.co/ccmusic-database/erhu_playing_tech

评估(Evaluation)

https://github.com/monetjoe/ccmusic_eval

引用(Cite)

@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论